AWS Timestream vs Apache Pinot
A detailed comparison
Compare AWS Timestream and Apache Pinot for time series and OLAP workloads
Learn About Time Series DatabasesChoosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of AWS Timestream and Apache Pinot so you can quickly see how they compare against each other.
The primary purpose of this article is to compare how AWS Timestream and Apache Pinot perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.
AWS Timestream vs Apache Pinot Breakdown
![]() |
||
Database Model | Time series database |
Columnar database |
Architecture | Timestream is a fully managed, serverless time series database service that is only available on AWS. |
Pinot can be deployed on-premises, in the cloud, or using a managed service |
License | Closed source |
Apache 2.0 |
Use Cases | Monitoring, observability, IoT, real-time analytics |
Real-time analytics, OLAP, user behavior analytics, clickstream analysis, ad tech, log analytics |
Scalability | Serverless and automatically scalable, handling ingestion, storage, and query workload without manual intervention |
Horizontally scalable, supports distributed architectures for high availability and performance |
AWS Timestream Overview
AWS Timestream is a fully managed, serverless time series database service developed by Amazon Web Services (AWS). Launched in 2020, Timestream is designed specifically for handling time series data, making it an ideal choice for IoT, monitoring, and analytics applications that require high ingestion rates, efficient storage, and fast querying capabilities. As a part of the AWS ecosystem, Timestream seamlessly integrates with other AWS services, simplifying the process of building and deploying time series applications in the cloud.
Apache Pinot Overview
Apache Pinot is a real-time distributed OLAP datastore, designed to answer complex analytical queries with low latency. It was initially developed at LinkedIn and later open-sourced in 2015. Pinot is well-suited for handling large-scale data and real-time analytics, providing near-instantaneous responses to complex queries on large datasets. It is used by several large organizations, such as LinkedIn, Microsoft, and Uber.
AWS Timestream for Time Series Data
AWS Timestream is designed specifically for handling time series data, making it a suitable choice for a wide range of applications that require high ingestion rates, efficient storage, and fast querying capabilities. Its dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, allows Timestream to automatically manage data retention and optimize storage costs based on data age and access patterns. Additionally, Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
Apache Pinot for Time Series Data
Apache Pinot is a solid choice for working with time series data due to its columnar storage and real-time ingestion capabilities. Pinot’s ability to ingest data from streams like Apache Kafka ensures that time series data can be analyzed as it is being generated, in addition to having options for bulk ingesting data.
AWS Timestream Key Concepts
- Memory Store: In AWS Timestream, the Memory Store is a component that stores recent, mutable time series data in memory for fast querying and analysis.
- Magnetic Store: The Magnetic Store in AWS Timestream is responsible for storing historical, immutable time series data on disk for cost-efficient, long-term storage.
- Time-to-Live (TTL): AWS Timestream allows users to set a TTL on their time series data, which determines how long data is retained in the Memory Store before being moved to the Magnetic Store or deleted.
Apache Pinot Key Concepts
- Segment: A segment is the basic unit of data storage in Pinot. It is a columnar storage format that contains a subset of the table’s data.
- Table: A table in Pinot is a collection of segments.
- Controller: The controller manages the metadata and orchestrates data ingestion, query execution, and cluster management.
- Broker: The broker is responsible for receiving queries, routing them to the appropriate servers, and returning the results to the client.
- Server: The server stores segments and processes queries on those segments.
AWS Timestream Architecture
Timestream is built on a serverless, distributed architecture that supports SQL-like querying capabilities. Its data model is specifically tailored for time series data, using time-stamped records and a flexible schema that can accommodate varying data granularities and dimensions. The core components of Timestream’s architecture include the Memory Store and the Magnetic Store, which together manage data retention, storage, and querying. The Memory Store is optimized for fast querying of recent data, while the Magnetic Store provides cost-efficient, long-term storage for historical data.
Apache Pinot Architecture
Pinot is a distributed, columnar datastore that uses a hybrid data model, combining features of both NoSQL and SQL databases. Its architecture consists of three main components: Controller, Broker, and Server. The Controller manages metadata and cluster operations, while Brokers handle query routing and Servers store and process data. Pinot’s columnar storage format enables efficient compression and quick query processing.
Free Time-Series Database Guide
Get a comprehensive review of alternatives and critical requirements for selecting yours.
AWS Timestream Features
Serverless architecture
AWS Timestream’s serverless architecture eliminates the need for users to manage or provision infrastructure, making it easy to scale and reducing operational overhead.
Dual-tiered storage
Timestream’s dual-tiered storage architecture, consisting of the Memory Store and Magnetic Store, automatically manages data retention and optimizes storage costs based on data age and access patterns.
SQL-like querying
AWS Timestream supports SQL-like querying and integrates with popular analytics tools, making it easy for users to gain insights from their time series data.
Apache Pinot Features
Real-time Ingestion
Pinot supports real-time data ingestion from Kafka and other streaming sources, allowing for up-to-date analytics.
Scalability
Pinot’s distributed architecture and partitioning capabilities enable horizontal scaling to handle large datasets and high query loads.
Low-latency Query Processing
Pinot’s columnar storage format and various performance optimizations allow for near-instantaneous responses to complex queries.
AWS Timestream Use Cases
IoT device monitoring
AWS Timestream’s support for high ingestion rates and efficient storage makes it an ideal choice for monitoring and analyzing data from IoT devices, such as sensors and smart appliances.
Application performance monitoring
Timestream’s fast querying capabilities and ability to handle large volumes of time series data make it suitable for application performance monitoring, allowing users to track and analyze key performance indicators in real-time and identify bottlenecks or issues.
Infrastructure monitoring
AWS Timestream can be used to monitor and analyze infrastructure metrics, such as CPU utilization, memory usage, and network traffic, enabling organizations to optimize resource utilization, identify potential issues, and maintain a high level of performance for their critical systems.
Apache Pinot Use Cases
Real-time Analytics
Pinot is designed to support real-time analytics, making it suitable for use cases that require up-to-date insights on large-scale data, such as monitoring and alerting systems, fraud detection, and recommendation engines.
Ad Tech and User Analytics
Apache Pinot is often used in the advertising technology and user analytics space, where low-latency, high-concurrency analytics are crucial for understanding user behavior, optimizing ad campaigns, and personalizing user experiences.
Anomaly Detection and Monitoring
Pinot’s real-time analytics capabilities make it suitable for anomaly detection and monitoring use cases, enabling users to identify unusual patterns or trends in their data and take corrective action as needed.
AWS Timestream Pricing Model
AWS Timestream offers a pay-as-you-go pricing model based on data ingestion, storage, and query execution. Ingestion costs are determined by the volume of data ingested into Timestream, while storage costs are based on the amount of data stored in the Memory Store and Magnetic Store. Query execution costs are calculated based on the amount of data scanned and processed during query execution. Timestream also offers a free tier for users to explore the service and build proof-of-concept applications without incurring costs.
Apache Pinot Pricing Model
As an open-source project, Apache Pinot is free to use. However, organizations may incur costs related to hardware, infrastructure, and support when deploying and managing a Pinot cluster. There are no specific pricing options or deployment models tied to Apache Pinot itself.
Get started with InfluxDB for free
InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.