Choosing the right database is a critical choice when building any software application. All databases have different strengths and weaknesses when it comes to performance, so deciding which database has the most benefits and the most minor downsides for your specific use case and data model is an important decision. Below you will find an overview of the key concepts, architecture, features, use cases, and pricing models of TDengine and TimescaleDB so you can quickly see how they compare against each other.

The primary purpose of this article is to compare how TDengine and TimescaleDB perform for workloads involving time series data, not for all possible use cases. Time series data typically presents a unique challenge in terms of database performance. This is due to the high volume of data being written and the query patterns to access that data. This article doesn’t intend to make the case for which database is better; it simply provides an overview of each database so you can make an informed decision.

TDengine vs TimescaleDB Breakdown

Database Model

Time series database

Time Series Database


TDengine can be deployed on-premises, in the cloud, or as a hybrid solution, allowing flexibility in deployment and management.

TimescaleDB is built on top of PostgreSQL and inherits its architecture. It extends PostgreSQL with time-series-specific optimizations and functions, allowing it to manage time series data efficiently. It can be deployed as a single node, in a multi-node setup, or in the cloud as a managed service.


AGPL 3.0

Timescale License (for TimescaleDB Community Edition); Apache 2.0 (for core PostgreSQL)

Use Cases

IoT data storage, industrial monitoring, smart energy, smart home, monitoring and observability

Monitoring, observability, IoT, real-time analytics, financial market data


Linearly scalable with clustering and built-in load balancing

Horizontally scalable through native support for partitioning, replication, and sharding. Offers multi-node capabilities for distributing data and queries across nodes.

TDengine Overview

TDengine is a high-performance, open source time series database designed to handle massive amounts of time series data efficiently. It was created by TAOS Data in 2017 and is specifically designed for Internet of Things (IoT), Industrial IoT, and IT infrastructure monitoring use cases. TDengine has a unique hybrid architecture that combines the advantages of both relational and NoSQL databases, providing high performance, easy-to-use SQL-like querying, and flexible data modeling capabilities.

TimescaleDB Overview

TimescaleDB is an open source time series database built on top of PostgreSQL. It was created to address the challenges of managing time series data, such as scalability, query performance, and data retention policies. TimescaleDB was first released in 2017 and has since become a popular choice for storing and analyzing time series data due to its PostgreSQL compatibility, performance optimizations, and flexible data retention policies.

TDengine for Time Series Data

TDengine is designed from the ground up as a time series database, so it will be a good fit for most use cases that heavily involve storing and analyzing time series data.

TimescaleDB for Time Series Data

TimescaleDB is specifically designed for time series data, making it a natural choice for storing and querying such data. It provides several advantages for time series data management like horizontal scalability, columnar storage, and retention policy support. However, TimescaleDB may not be the best choice for all time series use cases. One example would be if an application requires very high write throughput or real-time analytics, other specialized time series databases like InfluxDB may be more suitable.

TDengine Key Concepts

  • Super Table: A template for creating multiple tables with the same schema. It’s similar to the concept of table inheritance in some other databases.
  • Sub Table: A table created based on a Super Table, inheriting its schema. Sub Tables can have additional tags for categorization and querying purposes.
  • Tag: A metadata attribute used to categorize and filter Sub Tables in a Super Table. Tags are indexed and optimized for efficient querying.
  • Stable: A synonym for Super Table.
  • TSQL: TDengine’s SQL-like query language, designed specifically for time series data manipulation and retrieval.

TimescaleDB Key Concepts

  • Hypertable: A hypertable is a distributed table that is partitioned by time and possibly other dimensions, such as device ID or location. It is the primary abstraction for storing time series data in TimescaleDB and is designed to scale horizontally across multiple nodes.
  • Chunk: A chunk is a partition of a hypertable, containing a subset of the hypertable’s data. Chunks are created automatically by TimescaleDB based on a specified time interval and can be individually compressed, indexed, and backed up for better performance and data management.
  • Distributed Hypertables: For large-scale deployments, TimescaleDB supports distributed hypertables, which partition data across multiple nodes for improved query performance and fault tolerance.

TDengine Architecture

TDengine uses a hybrid architecture that combines the advantages of relational databases (support for SQL-like querying) and NoSQL databases (scalability and flexibility). It is based on a distributed, columnar storage model and uses a time series data model. TDengine uses data nodes to store data and handle queries. Management nodes coordinate the data nodes and store metadata like schema and cluster information.

TimescaleDB Architecture

TimescaleDB is an extension built on PostgreSQL, inheriting its relational data model and SQL support. However, TimescaleDB extends PostgreSQL with custom data structures and optimizations for time series data, such as hypertables and chunks.

Free Time-Series Database Guide

Get a comprehensive review of alternatives and critical requirements for selecting yours.

TDengine Features

Data ingestion

TDengine supports high-speed data ingestion, with the ability to handle millions of data points per second. It supports batch and individual data insertion using TSQL.

Data querying

TDengine provides a SQL-like query language (TSQL) that allows users to easily query time series data using familiar SQL syntax. It supports various aggregation functions, filtering, and joins.

Data retention and compression

TDengine automatically compresses data to save storage space and provides data retention policies to automatically delete old data.

TimescaleDB Features


TimescaleDB automatically partitions time series data tables using hypertables and chunks, which simplifies data management and improves query performance.

Time series focused SQL functions

TimescaleDB provides several specialized SQL functions and operators for time series data application scenarios, such as time_bucket, first, and last, which simplify querying and aggregating time series data.

Query optimization

As mentioned earlier, TimescaleDB extends PostgreSQL’s query planner for writing and querying time series data, including optimizations like time-based indexing and chunk pruning.

TDengine Use Cases

IoT data storage and analysis

TDengine is designed to handle massive amounts of time series data generated by IoT devices. Its high-performance ingestion, querying, and storage capabilities make it a suitable choice for IoT data storage and analysis.

Industrial IoT monitoring

TDengine can be used to store and analyze data from industrial IoT sensors and devices, helping organizations monitor equipment performance, detect anomalies, and optimize operations.

Infrastructure Monitoring

TDengine can be used to collect and analyze time series data from IT infrastructure components, such as servers, networks, and applications, facilitating real-time monitoring, alerting, and performance optimization.

TimescaleDB Use Cases

Monitoring and metrics

TimescaleDB is well-suited for storing and analyzing monitoring and metrics data, such as server performance metrics, application logs, and sensor data. Its hypertable structure and query optimizations make it easy to store, query, and visualize large volumes of time series data.

IoT data storage

TimescaleDB can be used to store and analyze IoT data, such as sensor readings and device status information. Its support for automatic partitioning and specialized SQL interfaces simplifies the management and querying of large-scale IoT datasets.

Financial data

TimescaleDB is suitable for storing and analyzing financial data, such as stock prices, exchange rates, and trading volumes. Its query optimizations and specialized SQL functions make it easy to perform time-based aggregations and analyze trends in financial data.

TDengine Pricing Model

TDengine is open source and free to use under the AGPLv3 license. TAOS Data also offers commercial licenses and enterprise support options for organizations that require additional features, support, or compliance with specific licensing requirements.

TimescaleDB Pricing Model

TimescaleDB is available in two editions: TimescaleDB Open Source and TimescaleDB Cloud. The open-source edition is free to use and can be self-hosted, while the cloud edition is a managed service with a pay-as-you-go pricing model based on storage, compute, and data transfer usage. TimescaleDB Cloud offers various pricing tiers with different levels of resources and features, such as continuous backups and high availability.

Get started with InfluxDB for free

InfluxDB Cloud is the fastest way to start storing and analyzing your time series data.