Amazon ECS and Apache Inlong Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Amazon ECS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Amazon ECS Input Plugin enables Telegraf to gather metrics from AWS ECS containers, providing detailed insights into container performance and resource usage.

The Inlong plugin connects Telegraf to Apache InLong, enabling seamless transmission of collected metrics to an InLong instance.

Integration details

Amazon ECS

The Amazon ECS plugin for Telegraf is designed to collect metrics from ECS (Elastic Container Service) tasks running on AWS Fargate or EC2 instances. By utilizing the ECS metadata and stats API endpoints (v2 and v3), it fetches real-time information about container performance and health within a task. This plugin operates within the same task as the inspected workload, ensuring seamless access to metadata and statistics. Notably, it incorporates ECS-specific features that distinguish it from the Docker input plugin, such as handling unique ECS metadata formats and statistics. Users can include or exclude specific containers and adjust which container states to monitor, along with defining tag options for ECS labels. This flexibility allows for a tailored monitoring experience that aligns with the specific needs of an ECS environment, thereby enhancing observability and control over containerized applications.

Apache Inlong

This Inlong plugin is designed to publish metrics to an Apache InLong instance, which facilitates the management of data streams in a scalable manner. Apache InLong provides a robust framework for efficient data transmission between various components in a distributed environment. By leveraging this plugin, users can effectively route and transmit metrics collected by Telegraf to their InLong data-proxy infrastructure. As a key component in a data pipeline, the Inlong Output Plugin helps ensure that data is consistently formatted, streamed correctly, and managed in compliance with the standards set by Apache InLong, making it an essential tool for organizations looking to enhance their data analytics and reporting capabilities.

Configuration

Amazon ECS

[[inputs.ecs]]
  # endpoint_url = ""
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

[[inputs.ecs]]
  endpoint_url = "http://169.254.170.2"
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

Apache Inlong

[[outputs.inlong]]
  ## Manager URL to obtain the Inlong data-proxy IP list for sending the data
  url = "http://127.0.0.1:8083"

  ## Unique identifier for the data-stream group
  group_id = "telegraf"  

  ## Unique identifier for the data stream within its group
  stream_id = "telegraf"  

  ## Data format to output.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
  # data_format = "influx"

Input and output integration examples

Amazon ECS

  1. Dynamic Container Monitoring: Use the Amazon ECS plugin to monitor container health dynamically within an autoscaling ECS architecture. As new containers spin up or down, the plugin will automatically adjust the metrics it collects, ensuring that each container’s performance data is captured efficiently without manual configuration.

  2. Custom Resource Allocation Alerts: Implement the ECS plugin to establish thresholds for resource usage per container. By integrating with notification systems, teams can receive alerts when a container’s CPU or memory usage exceeds predefined limits, enabling proactive resource management and maintaining application performance.

  3. Cost-Optimization Dashboard: Leverage the metrics gathered from the ECS plugin to create a dashboard that visualizes resource usage and costs associated with each container. This insight allows organizations to identify underutilized resources, optimizing costs associated with their container infrastructure, thus driving financial efficiency in cloud operations.

  4. Advanced Container Security Monitoring: Utilize this plugin in conjunction with security tools to monitor ECS container metrics for anomalies. By continuously analyzing usage patterns, any sudden spikes or irregular behaviors can be detected, prompting automated security responses and maintaining system integrity.

Apache Inlong

  1. Real-time Metrics Monitoring: Integrating the Inlong plugin with a real-time monitoring dashboard allows teams to visualize system performance continuously. As metrics flow from Telegraf to InLong, organizations can create dynamic panels in their monitoring tools, providing instant insights into system health, resource utilization, and performance bottlenecks. This setup encourages proactive management and swift identification of potential issues before they escalate into critical failures.

  2. Centralized Data Processing: Use the Inlong plugin to send Telegraf metrics to a centralized data processing pipeline that processes large volumes of data for analysis. By directing all collected metrics through Apache InLong, businesses can streamline their data workflows and ensure consistency in data formatting and processing. This centralized approach facilitates easier data integration with business intelligence tools and enhances decision-making through consolidated data insights.

  3. Integration with Machine Learning Models: By feeding metrics collected through the Inlong Output Plugin into machine learning models, teams can enhance predictive analytics capabilities. For instance, metrics can be analyzed to predict system failures or performance trends. This application allows organizations to leverage historical data and infer future performance, helping them optimize resource allocation and minimize downtime using automated alerts based on model predictions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration