AWS Data Firehose and AWS Redshift Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider AWS Data Firehose and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin listens for metrics sent via HTTP from AWS Data Firehose in supported data formats, providing real-time data ingestion capabilities.

This plugin enables Telegraf to send metrics to Amazon Redshift using the PostgreSQL plugin, allowing metrics to be stored in a scalable, SQL-compatible data warehouse.

Integration details

AWS Data Firehose

The AWS Data Firehose Telegraf plugin is designed to receive metrics from AWS Data Firehose via HTTP. This plugin listens for incoming data in various formats and processes it according to the request-response schema outlined in the official AWS documentation. Unlike standard input plugins that operate on a fixed interval, this service plugin initializes a listener that remains active, waiting for incoming metrics. This allows for real-time data ingestion from AWS Data Firehose, making it suitable for scenarios where immediate data processing is required. Key features include the ability to specify service addresses, paths, and support for TLS connections for secure data transmission. Additionally, the plugin accommodates optional authentication keys and custom tags, enhancing its flexibility in various use cases involving data streaming and processing.

AWS Redshift

This configuration uses the Telegraf PostgreSQL plugin to send metrics to Amazon Redshift, AWS’s fully managed cloud data warehouse that supports SQL-based analytics at scale. Although Redshift is based on PostgreSQL 8.0.2, it does not support all standard PostgreSQL features such as full JSONB, stored procedures, or upserts. Therefore, care must be taken to predefine compatible tables and schema when using Telegraf for Redshift integration. This setup is ideal for use cases that benefit from long-term, high-volume metric storage and integration with AWS analytics tools like QuickSight or Redshift Spectrum. Metrics stored in Redshift can be joined with business datasets for rich observability and BI analysis.

Configuration

AWS Data Firehose

[[inputs.firehose]]
  ## Address and port to host HTTP listener on
  service_address = ":8080"

  ## Paths to listen to.
  # paths = ["/telegraf"]

  ## maximum duration before timing out read of the request
  # read_timeout = "5s"
  ## maximum duration before timing out write of the response
  # write_timeout = "5s"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Add service certificate and key
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Minimal TLS version accepted by the server
  # tls_min_version = "TLS12"

  ## Optional access key to accept for authentication.
  ## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
  ## If no access_key is provided (default), authentication is completely disabled and
  ## this plugin will accept all request ignoring the provided access-key in the request!
  # access_key = "foobar"

  ## Optional setting to add parameters as tags
  ## If the http header "x-amz-firehose-common-attributes" is not present on the
  ## request, no corresponding tag will be added. The header value should be a
  ## json and should follow the schema as describe in the official documentation:
  ## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
  # parameter_tags = ["env"]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

AWS Redshift

[[outputs.postgresql]]
  ## Redshift connection settings
  host = "redshift-cluster.example.us-west-2.redshift.amazonaws.com"
  port = 5439
  user = "telegraf"
  password = "YourRedshiftPassword"
  database = "metrics"
  sslmode = "require"

  ## Optional: specify a dynamic table template for inserting metrics
  table_template = "telegraf_metrics"

  ## Note: Redshift does not support all PostgreSQL features; ensure your table exists and is compatible

Input and output integration examples

AWS Data Firehose

  1. Real-Time Data Analytics: Using the AWS Data Firehose plugin, organizations can stream data in real-time from various sources, such as application logs or IoT devices, directly into analytics platforms. This allows data teams to analyze incoming data as it is generated, enabling rapid insights and operational adjustments based on fresh metrics.

  2. Profile Access Patterns for Optimization: By collecting data about how clients interact with applications through AWS Data Firehose, businesses can gain valuable insights into user behavior. This can drive content personalization strategies or optimize server architecture for better performance based on traffic patterns.

  3. Automated Alerting Mechanism: Integrating AWS Data Firehose with alerting systems via this plugin allows teams to set up automated alerts based on specific metrics collected. For example, if a particular threshold is reached in the input data, alerts can trigger operations teams to investigate potential issues before they escalate.

AWS Redshift

  1. Business-Aware Infrastructure Monitoring: Store infrastructure metrics from Telegraf in Redshift alongside sales, marketing, or customer engagement data. Analysts can correlate system performance with business KPIs using SQL joins and window functions.

  2. Historical Trend Analysis for Cloud Resources: Use Telegraf to continuously log CPU, memory, and I/O metrics to Redshift. Combine with time-series SQL queries and visualization tools like Amazon QuickSight to spot trends and forecast resource demand.

  3. Security Auditing of System Behavior: Send metrics related to system logins, file changes, or resource spikes into Redshift. Analysts can build dashboards or reports for compliance auditing using SQL queries across multi-year data sets.

  4. Cross-Environment SLA Reporting: Aggregate SLA metrics from multiple cloud accounts and regions using Telegraf, and push them to a central Redshift warehouse. Enable unified SLA compliance dashboards and executive reporting via a single SQL interface.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration