AWS Data Firehose and Google Cloud Monitoring Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider AWS Data Firehose and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin listens for metrics sent via HTTP from AWS Data Firehose in supported data formats, providing real-time data ingestion capabilities.

The Stackdriver plugin allows users to send metrics directly to a specified project in Google Cloud Monitoring, facilitating robust monitoring capabilities across their cloud resources.

Integration details

AWS Data Firehose

The AWS Data Firehose Telegraf plugin is designed to receive metrics from AWS Data Firehose via HTTP. This plugin listens for incoming data in various formats and processes it according to the request-response schema outlined in the official AWS documentation. Unlike standard input plugins that operate on a fixed interval, this service plugin initializes a listener that remains active, waiting for incoming metrics. This allows for real-time data ingestion from AWS Data Firehose, making it suitable for scenarios where immediate data processing is required. Key features include the ability to specify service addresses, paths, and support for TLS connections for secure data transmission. Additionally, the plugin accommodates optional authentication keys and custom tags, enhancing its flexibility in various use cases involving data streaming and processing.

Google Cloud Monitoring

This plugin writes metrics to a project in Google Cloud Monitoring, which used to be known as Stackdriver. Authentication is a prerequisite and can be achieved via service accounts or user credentials. The plugin is designed to group metrics by a namespace variable and metric key, facilitating organized data management. However, users are encouraged to use the official naming format for enhanced query efficiency. The plugin supports additional configurations for managing metric representation and allows tags to be treated as resource labels. Notably, it imposes certain restrictions on the data it can accept, such as not allowing string values or points that are out of chronological order.

Configuration

AWS Data Firehose

[[inputs.firehose]]
  ## Address and port to host HTTP listener on
  service_address = ":8080"

  ## Paths to listen to.
  # paths = ["/telegraf"]

  ## maximum duration before timing out read of the request
  # read_timeout = "5s"
  ## maximum duration before timing out write of the response
  # write_timeout = "5s"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Add service certificate and key
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Minimal TLS version accepted by the server
  # tls_min_version = "TLS12"

  ## Optional access key to accept for authentication.
  ## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
  ## If no access_key is provided (default), authentication is completely disabled and
  ## this plugin will accept all request ignoring the provided access-key in the request!
  # access_key = "foobar"

  ## Optional setting to add parameters as tags
  ## If the http header "x-amz-firehose-common-attributes" is not present on the
  ## request, no corresponding tag will be added. The header value should be a
  ## json and should follow the schema as describe in the official documentation:
  ## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
  # parameter_tags = ["env"]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

Google Cloud Monitoring

[[outputs.stackdriver]]
  ## GCP Project
  project = "project-id"

  ## Quota Project
  ## Specifies the Google Cloud project that should be billed for metric ingestion.
  ## If omitted, the quota is charged to the service account’s default project.
  ## This is useful when sending metrics to multiple projects using a single service account.
  ## The caller must have the `serviceusage.services.use` permission on the specified project.
  # quota_project = ""

  ## The namespace for the metric descriptor
  ## This is optional and users are encouraged to set the namespace as a
  ## resource label instead. If omitted it is not included in the metric name.
  namespace = "telegraf"

  ## Metric Type Prefix
  ## The DNS name used with the metric type as a prefix.
  # metric_type_prefix = "custom.googleapis.com"

  ## Metric Name Format
  ## Specifies the layout of the metric name, choose from:
  ##  * path: 'metric_type_prefix_namespace_name_key'
  ##  * official: 'metric_type_prefix/namespace_name_key/kind'
  # metric_name_format = "path"

  ## Metric Data Type
  ## By default, telegraf will use whatever type the metric comes in as.
  ## However, for some use cases, forcing int64, may be preferred for values:
  ##   * source: use whatever was passed in
  ##   * double: preferred datatype to allow queries by PromQL.
  # metric_data_type = "source"

  ## Tags as resource labels
  ## Tags defined in this option, when they exist, are added as a resource
  ## label and not included as a metric label. The values from tags override
  ## the values defined under the resource_labels config options.
  # tags_as_resource_label = []

  ## Custom resource type
  # resource_type = "generic_node"

  ## Override metric type by metric name
  ## Metric names matching the values here, globbing supported, will have the
  ## metric type set to the corresponding type.
  # metric_counter = []
  # metric_gauge = []
  # metric_histogram = []

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of
  ## the table

  ## Additional resource labels
  # [outputs.stackdriver.resource_labels]
  #   node_id = "$HOSTNAME"
  #   namespace = "myapp"
  #   location = "eu-north0"

Input and output integration examples

AWS Data Firehose

  1. Real-Time Data Analytics: Using the AWS Data Firehose plugin, organizations can stream data in real-time from various sources, such as application logs or IoT devices, directly into analytics platforms. This allows data teams to analyze incoming data as it is generated, enabling rapid insights and operational adjustments based on fresh metrics.

  2. Profile Access Patterns for Optimization: By collecting data about how clients interact with applications through AWS Data Firehose, businesses can gain valuable insights into user behavior. This can drive content personalization strategies or optimize server architecture for better performance based on traffic patterns.

  3. Automated Alerting Mechanism: Integrating AWS Data Firehose with alerting systems via this plugin allows teams to set up automated alerts based on specific metrics collected. For example, if a particular threshold is reached in the input data, alerts can trigger operations teams to investigate potential issues before they escalate.

Google Cloud Monitoring

  1. Multi-Project Metric Aggregation: Use this plugin to send aggregated metrics from various applications across different projects into a single Google Cloud Monitoring project. This use case helps centralize metrics for teams managing multiple applications, providing a unified view for performance monitoring and enhancing decision-making. By configuring different quota projects for billing, organizations can ensure proper cost management while benefiting from a consolidated monitoring strategy.

  2. Anomaly Detection Setup: Integrate the plugin with a machine learning-based analytics tool that identifies anomalies in the collected metrics. Using the historical data provided by the plugin, the tool can learn normal baseline behavior and promptly alert the operations team when unusual patterns arise, enabling proactive troubleshooting and minimizing service disruptions.

  3. Dynamic Resource Labeling: Implement dynamic tagging by utilizing the tags_as_resource_label option to adaptively attach resource labels based on runtime conditions. This setup allows metrics to provide context-sensitive information, such as varying environmental parameters or operational states, enhancing the granularity of monitoring and reporting without changing the fundamental metric structure.

  4. Custom Metric Visualization Dashboards: Leverage the data collected by the Google Cloud Monitoring output plugin to feed a custom metrics visualization dashboard using a third-party framework. By visualizing metrics in real-time, teams can achieve better situational awareness, notably by correlating different metrics, improving operational decision-making, and streamlining performance management workflows.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration