Azure Monitor and Apache Inlong Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
Gather metrics from Azure resources using the Azure Monitor API.
The Inlong plugin connects Telegraf to Apache InLong, enabling seamless transmission of collected metrics to an InLong instance.
Integration details
Azure Monitor
The Azure Monitor Telegraf plugin is specifically designed for gathering metrics from various Azure resources using the Azure Monitor API. Users must provide specific credentials such as client_id
, client_secret
, tenant_id
, and subscription_id
to authenticate and gain access to their Azure resources. Additionally, the plugin supports functionality to collect metrics from both individual resources and resource groups or subscriptions, allowing for flexible and scalable metric collection tailored to user needs. This plugin is ideal for organizations leveraging Azure cloud infrastructure, providing crucial insights into resource performance and utilization over time, facilitating proactive management and optimization of cloud resources.
Apache Inlong
This Inlong plugin is designed to publish metrics to an Apache InLong instance, which facilitates the management of data streams in a scalable manner. Apache InLong provides a robust framework for efficient data transmission between various components in a distributed environment. By leveraging this plugin, users can effectively route and transmit metrics collected by Telegraf to their InLong data-proxy infrastructure. As a key component in a data pipeline, the Inlong Output Plugin helps ensure that data is consistently formatted, streamed correctly, and managed in compliance with the standards set by Apache InLong, making it an essential tool for organizations looking to enhance their data analytics and reporting capabilities.
Configuration
Azure Monitor
# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
# can be found under Overview->Essentials in the Azure portal for your application/service
subscription_id = "<>"
# can be obtained by registering an application under Azure Active Directory
client_id = "<>"
# can be obtained by registering an application under Azure Active Directory.
# If not specified Default Azure Credentials chain will be attempted:
# - Environment credentials (AZURE_*)
# - Workload Identity in Kubernetes cluster
# - Managed Identity
# - Azure CLI auth
# - Developer Azure CLI auth
client_secret = "<>"
# can be found under Azure Active Directory->Properties
tenant_id = "<>"
# Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
# cloud_option = "AzurePublic"
# resource target #1 to collect metrics from
[[inputs.azure_monitor.resource_target]]
# can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
# must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
# must be removed from the beginning of Resource ID property value)
resource_id = "<>"
# the metric names to collect
# leave the array empty to use all metrics available to this resource
metrics = [ "<>", "<>" ]
# metrics aggregation type value to collect
# can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
# leave the array empty to collect all aggregation types values for each metric
aggregations = [ "<>", "<>" ]
# resource target #2 to collect metrics from
[[inputs.azure_monitor.resource_target]]
resource_id = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
# the resource group name
resource_group = "<>"
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
# the resource type
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
resource_group = "<>"
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
</code></pre>
Apache Inlong
[[outputs.inlong]]
## Manager URL to obtain the Inlong data-proxy IP list for sending the data
url = "http://127.0.0.1:8083"
## Unique identifier for the data-stream group
group_id = "telegraf"
## Unique identifier for the data stream within its group
stream_id = "telegraf"
## Data format to output.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_OUTPUT.md
# data_format = "influx"
Input and output integration examples
Azure Monitor
-
Dynamic Resource Monitoring: Use the Azure Monitor plugin to dynamically gather metrics from Azure resources based on specific criteria like tags or resource types. Organizations can automate the process of loading and unloading resource metrics, enabling better performance tracking and optimization based on resource utilization patterns.
-
Multi-Cloud Monitoring Integration: Integrate metrics collected from Azure Monitor with other cloud providers using a centralized monitoring solution. This allows organizations to view and analyze performance data across multiple cloud deployments, providing a holistic overview of resource performance and costs, and streamlining operations.
-
Anomaly Detection and Alerting: Leverage the metrics gathered via the Azure Monitor plugin in conjunction with machine learning algorithms to detect anomalies in resource utilization. By establishing baseline performance metrics and automatically alerting on deviations, organizations can mitigate risks and address performance issues before they escalate.
-
Historical Performance Analysis: Use the collected Azure metrics to conduct historical analysis by feeding the data into a data warehousing solution. This enables organizations to track trends over time, allowing for detailed reporting and decision-making based on historical performance data.
Apache Inlong
-
Real-time Metrics Monitoring: Integrating the Inlong plugin with a real-time monitoring dashboard allows teams to visualize system performance continuously. As metrics flow from Telegraf to InLong, organizations can create dynamic panels in their monitoring tools, providing instant insights into system health, resource utilization, and performance bottlenecks. This setup encourages proactive management and swift identification of potential issues before they escalate into critical failures.
-
Centralized Data Processing: Use the Inlong plugin to send Telegraf metrics to a centralized data processing pipeline that processes large volumes of data for analysis. By directing all collected metrics through Apache InLong, businesses can streamline their data workflows and ensure consistency in data formatting and processing. This centralized approach facilitates easier data integration with business intelligence tools and enhances decision-making through consolidated data insights.
-
Integration with Machine Learning Models: By feeding metrics collected through the Inlong Output Plugin into machine learning models, teams can enhance predictive analytics capabilities. For instance, metrics can be analyzed to predict system failures or performance trends. This application allows organizations to leverage historical data and infer future performance, helping them optimize resource allocation and minimize downtime using automated alerts based on model predictions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration