Azure Monitor and Microsoft Fabric Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
Gather metrics from Azure resources using the Azure Monitor API.
The Microsoft Fabric plugin writes metrics to Real time analytics in Fabric services, enabling powerful data storage and analysis capabilities.
Integration details
Azure Monitor
The Azure Monitor Telegraf plugin is specifically designed for gathering metrics from various Azure resources using the Azure Monitor API. Users must provide specific credentials such as client_id
, client_secret
, tenant_id
, and subscription_id
to authenticate and gain access to their Azure resources. Additionally, the plugin supports functionality to collect metrics from both individual resources and resource groups or subscriptions, allowing for flexible and scalable metric collection tailored to user needs. This plugin is ideal for organizations leveraging Azure cloud infrastructure, providing crucial insights into resource performance and utilization over time, facilitating proactive management and optimization of cloud resources.
Microsoft Fabric
This plugin allows you to leverage Microsoft Fabric’s capabilities to store and analyze your Telegraf metrics. Eventhouse is a high-performance, scalable data-store designed for real-time analytics. It allows you to ingest, store and query large volumes of data with low latency. The plugin supports both events and metrics with versatile grouping options. It provides various configuration parameters including connection strings specifying details like the data source, ingestion types, and which tables to use for storage. With support for streaming ingestion and event streams, this plugin enables seamless integration and data flow into Microsoft’s analytics ecosystem, allowing for rich data querying capabilities and near-real-time processing.
Configuration
Azure Monitor
# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
# can be found under Overview->Essentials in the Azure portal for your application/service
subscription_id = "<>"
# can be obtained by registering an application under Azure Active Directory
client_id = "<>"
# can be obtained by registering an application under Azure Active Directory.
# If not specified Default Azure Credentials chain will be attempted:
# - Environment credentials (AZURE_*)
# - Workload Identity in Kubernetes cluster
# - Managed Identity
# - Azure CLI auth
# - Developer Azure CLI auth
client_secret = "<>"
# can be found under Azure Active Directory->Properties
tenant_id = "<>"
# Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
# cloud_option = "AzurePublic"
# resource target #1 to collect metrics from
[[inputs.azure_monitor.resource_target]]
# can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
# must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
# must be removed from the beginning of Resource ID property value)
resource_id = "<>"
# the metric names to collect
# leave the array empty to use all metrics available to this resource
metrics = [ "<>", "<>" ]
# metrics aggregation type value to collect
# can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
# leave the array empty to collect all aggregation types values for each metric
aggregations = [ "<>", "<>" ]
# resource target #2 to collect metrics from
[[inputs.azure_monitor.resource_target]]
resource_id = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
# the resource group name
resource_group = "<>"
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
# the resource type
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
resource_group = "<>"
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
</code></pre>
Microsoft Fabric
[[outputs.microsoft_fabric]]
## The URI property of the resource on Azure
connection_string = "https://trd-abcd.xx.kusto.fabric.microsoft.com;Database=kusto_eh;Table Name=telegraf_dump;Key=value"
## Client timeout
# timeout = "30s"
Input and output integration examples
Azure Monitor
-
Dynamic Resource Monitoring: Use the Azure Monitor plugin to dynamically gather metrics from Azure resources based on specific criteria like tags or resource types. Organizations can automate the process of loading and unloading resource metrics, enabling better performance tracking and optimization based on resource utilization patterns.
-
Multi-Cloud Monitoring Integration: Integrate metrics collected from Azure Monitor with other cloud providers using a centralized monitoring solution. This allows organizations to view and analyze performance data across multiple cloud deployments, providing a holistic overview of resource performance and costs, and streamlining operations.
-
Anomaly Detection and Alerting: Leverage the metrics gathered via the Azure Monitor plugin in conjunction with machine learning algorithms to detect anomalies in resource utilization. By establishing baseline performance metrics and automatically alerting on deviations, organizations can mitigate risks and address performance issues before they escalate.
-
Historical Performance Analysis: Use the collected Azure metrics to conduct historical analysis by feeding the data into a data warehousing solution. This enables organizations to track trends over time, allowing for detailed reporting and decision-making based on historical performance data.
Microsoft Fabric
-
Real-time Monitoring Dashboards: Utilize the Microsoft Fabric plugin to feed live metrics from your applications into a real-time dashboard on Microsoft Fabric. This allows teams to visualize key performance indicators instantly, enabling quick decision-making and timely responses to performance issues.
-
Automated Data Ingestion from IoT Devices: Use this plugin in scenarios where metrics from IoT devices need to be ingested into Azure for analysis. Using the plugin’s capabilities, data can be streamed continuously, facilitating real-time analytics and reporting without complex coding efforts.
-
Cross-Platform Data Aggregation: Leverage the plugin to consolidate metrics from multiple systems and applications into a single Azure Data Explorer table. This use case enables easier data management and analysis by centralizing disparate data sources within a unified analytics framework.
-
Enhanced Event Transformation Workflows: Integrate the plugin with Eventstreams to facilitate real-time event ingestion and transformation. By configuring different metrics and partition keys, users can manipulate the flow of data as it enters the system, allowing for advanced processing before the data reaches its final destination.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration