Cisco Model-Driven Telemetry and Dynatrace Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Cisco MDT and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Cisco Model-Driven Telemetry (MDT) plugin facilitates the collection of telemetry data from Cisco networking platforms, utilizing gRPC and TCP transport mechanisms. This plugin is essential for users looking to implement advanced telemetry solutions for better insights and operational efficiency.

The Dynatrace plugin allows users to send metrics collected by Telegraf directly to Dynatrace for monitoring and analysis. This integration enhances the observability of systems and applications, providing valuable insights into performance and operational health.

Integration details

Cisco Model-Driven Telemetry

Cisco model-driven telemetry (MDT) is designed to provide a robust means of consuming telemetry data from various Cisco platforms, including IOS XR, IOS XE, and NX-OS. This plugin focuses on the efficient transport of telemetry data using either TCP or gRPC protocols, offering flexibility based on the network environment and requirements. The gRPC transport is particularly advantageous as it supports TLS for enhanced security through encryption and authentication. The plugin is compatible with a range of software versions on Cisco devices, enabling organizations to leverage telemetry capabilities across their network operations. It is especially useful for network monitoring and analytics, as it enables real-time data collection directly from Cisco devices, enhancing visibility into network performance, resource utilization, and operational metrics.

Dynatrace

The Dynatrace plugin for Telegraf facilitates the transmission of metrics to the Dynatrace platform via the Dynatrace Metrics API V2. This plugin can function in two modes: it can run alongside the Dynatrace OneAgent, which automates authentication, or it can operate in a standalone configuration that requires manual specification of the URL and API token for environments without a OneAgent. The plugin primarily reports metrics as gauges unless explicitly configured to treat certain metrics as delta counters using the available config options. This feature empowers users to customize the behavior of metrics sent to Dynatrace, harnessing the robust capabilities of the platform for comprehensive performance monitoring and observability. It’s crucial for users to ensure compliance with version requirements for both Dynatrace and Telegraf, thereby optimizing compatibility and performance when integrating with the Dynatrace ecosystem.

Configuration

Cisco Model-Driven Telemetry

[[inputs.cisco_telemetry_mdt]]
 ## Telemetry transport can be "tcp" or "grpc".  TLS is only supported when
 ## using the grpc transport.
 transport = "grpc"

 ## Address and port to host telemetry listener
 service_address = ":57000"

 ## Grpc Maximum Message Size, default is 4MB, increase the size. This is
 ## stored as a uint32, and limited to 4294967295.
 max_msg_size = 4000000

 ## Enable TLS; grpc transport only.
 # tls_cert = "/etc/telegraf/cert.pem"
 # tls_key = "/etc/telegraf/key.pem"

 ## Enable TLS client authentication and define allowed CA certificates; grpc
 ##  transport only.
 # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

 ## Define (for certain nested telemetry measurements with embedded tags) which fields are tags
 # embedded_tags = ["Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface/input/service-policy-names/service-policy-instance/statistics/class-stats/class-name"]

 ## Include the delete field in every telemetry message.
 # include_delete_field = false

 ## Specify custom name for incoming MDT source field.
 # source_field_name = "mdt_source"

 ## Define aliases to map telemetry encoding paths to simple measurement names
 [inputs.cisco_telemetry_mdt.aliases]
   ifstats = "ietf-interfaces:interfaces-state/interface/statistics"
 ## Define Property Xformation, please refer README and https://pubhub.devnetcloud.com/media/dme-docs-9-3-3/docs/appendix/ for Model details.
 [inputs.cisco_telemetry_mdt.dmes]
#    Global Property Xformation.
#    prop1 = "uint64 to int"
#    prop2 = "uint64 to string"
#    prop3 = "string to uint64"
#    prop4 = "string to int64"
#    prop5 = "string to float64"
#    auto-prop-xfrom = "auto-float-xfrom" #Xform any property which is string, and has float number to type float64
#    Per Path property xformation, Name is telemetry configuration under sensor-group, path configuration "WORD         Distinguished Name"
#    Per Path configuration is better as it avoid property collision issue of types.
#    dnpath = '{"Name": "show ip route summary","prop": [{"Key": "routes","Value": "string"}, {"Key": "best-paths","Value": "string"}]}'
#    dnpath2 = '{"Name": "show processes cpu","prop": [{"Key": "kernel_percent","Value": "float"}, {"Key": "idle_percent","Value": "float"}, {"Key": "process","Value": "string"}, {"Key": "user_percent","Value": "float"}, {"Key": "onesec","Value": "float"}]}'
#    dnpath3 = '{"Name": "show processes memory physical","prop": [{"Key": "processname","Value": "string"}]}'

 ## Additional GRPC connection settings.
 [inputs.cisco_telemetry_mdt.grpc_enforcement_policy]
  ## GRPC permit keepalives without calls, set to true if your clients are
  ## sending pings without calls in-flight. This can sometimes happen on IOS-XE
  ## devices where the GRPC connection is left open but subscriptions have been
  ## removed, and adding subsequent subscriptions does not keep a stable session.
  # permit_keepalive_without_calls = false

  ## GRPC minimum timeout between successive pings, decreasing this value may
  ## help if this plugin is closing connections with ENHANCE_YOUR_CALM (too_many_pings).
  # keepalive_minimum_time = "5m"

Dynatrace

[[outputs.dynatrace]]
  ## For usage with the Dynatrace OneAgent you can omit any configuration,
  ## the only requirement is that the OneAgent is running on the same host.
  ## Only setup environment url and token if you want to monitor a Host without the OneAgent present.
  ##
  ## Your Dynatrace environment URL.
  ## For Dynatrace OneAgent you can leave this empty or set it to "http://127.0.0.1:14499/metrics/ingest" (default)
  ## For Dynatrace SaaS environments the URL scheme is "https://{your-environment-id}.live.dynatrace.com/api/v2/metrics/ingest"
  ## For Dynatrace Managed environments the URL scheme is "https://{your-domain}/e/{your-environment-id}/api/v2/metrics/ingest"
  url = ""

  ## Your Dynatrace API token.
  ## Create an API token within your Dynatrace environment, by navigating to Settings > Integration > Dynatrace API
  ## The API token needs data ingest scope permission. When using OneAgent, no API token is required.
  api_token = ""

  ## Optional prefix for metric names (e.g.: "telegraf")
  prefix = "telegraf"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Optional flag for ignoring tls certificate check
  # insecure_skip_verify = false

  ## Connection timeout, defaults to "5s" if not set.
  timeout = "5s"

  ## If you want metrics to be treated and reported as delta counters, add the metric names here
  additional_counters = [ ]

  ## In addition or as an alternative to additional_counters, if you want metrics to be treated and
  ## reported as delta counters using regular expression pattern matching
  additional_counters_patterns = [ ]

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Optional dimensions to be added to every metric
  # [outputs.dynatrace.default_dimensions]
  # default_key = "default value"

Input and output integration examples

Cisco Model-Driven Telemetry

  1. Real-Time Network Monitoring: Utilize the Cisco MDT plugin to collect network performance metrics from Cisco routers and switches. By feeding telemetry data into a visualization tool, network operators can observe traffic trends, bandwidth usage, and error rates in real-time. This proactive monitoring allows teams to swiftly address issues before they affect network performance, resulting in a more reliable service.

  2. Automated Anomaly Detection: Integrate Cisco MDT with machine learning algorithms to create an automated anomaly detection system. By continuously analyzing telemetry data, the system can identify deviations from typical operational patterns, providing alerts for unusual conditions that may signify network problems or security threats, which can aid in maintaining operational integrity.

  3. Dynamic Configuration Management: Leveraging the telemetry data collected from Cisco devices, organizations can implement dynamic configuration management solutions that automatically adjust network settings based on current performance indicators. For instance, if the telemetry indicates high utilization on certain links, the system could dynamically route traffic to underutilized paths, optimizing resource usage.

  4. Enhanced Reporting and Analytics: Use the Cisco MDT plugin to feed detailed telemetry data into analytics platforms, enabling comprehensive reporting on network health and performance. Historical and real-time analysis can guide decision-making and strategic planning, helping organizations to allocate resources more effectively and understand their network’s operational landscape better.

Dynatrace

  1. Cloud Infrastructure Monitoring: Utilize the Dynatrace plugin to monitor a cloud infrastructure setup, feeding real-time metrics from Telegraf into Dynatrace. This integration provides a holistic view of resource utilization, application performance, and system health, enabling proactive responses to performance issues across various cloud environments.

  2. Custom Application Performance Metrics: Implement custom application-specific metrics by configuring the Dynatrace output plugin to send tailored metrics from Telegraf. By leveraging additional counters and dimension options, development teams can gain insights that are precisely aligned with their application’s operational requirements, allowing for targeted optimization efforts.

  3. Multi-Environment Metrics Management: For organizations running multiple Dynatrace environments (e.g., production, staging, and development), use this plugin to manage metrics for all environments from a single Telegraf instance. With proper configuration of endpoints and API tokens, teams can maintain consistent monitoring practices throughout the SDLC, ensuring that performance anomalies are detected early in the development process.

  4. Automated Alerting Based on Metrics Changes: Integrate the Dynatrace output plugin with an alerting mechanism that triggers notifications when specific metrics exceed defined thresholds. This scenario involves configuring additional counters to monitor crucial application performance indicators, enabling swift remediation actions to maintain service availability and user satisfaction.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration