Cisco Model-Driven Telemetry and New Relic Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Cisco MDT and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Cisco Model-Driven Telemetry (MDT) plugin facilitates the collection of telemetry data from Cisco networking platforms, utilizing gRPC and TCP transport mechanisms. This plugin is essential for users looking to implement advanced telemetry solutions for better insights and operational efficiency.

This plugin allows the sending of metrics to New Relic Insights using the Metrics API, enabling effective monitoring and analysis of application performance.

Integration details

Cisco Model-Driven Telemetry

Cisco model-driven telemetry (MDT) is designed to provide a robust means of consuming telemetry data from various Cisco platforms, including IOS XR, IOS XE, and NX-OS. This plugin focuses on the efficient transport of telemetry data using either TCP or gRPC protocols, offering flexibility based on the network environment and requirements. The gRPC transport is particularly advantageous as it supports TLS for enhanced security through encryption and authentication. The plugin is compatible with a range of software versions on Cisco devices, enabling organizations to leverage telemetry capabilities across their network operations. It is especially useful for network monitoring and analytics, as it enables real-time data collection directly from Cisco devices, enhancing visibility into network performance, resource utilization, and operational metrics.

New Relic

This plugin writes metrics to New Relic Insights utilizing the Metrics API, which provides a robust mechanism for sending time series data to the New Relic platform. Users must first obtain an Insights API Key to authenticate and authorize their data submissions. The plugin is designed to facilitate easy integration with New Relic’s monitoring and analytics capabilities, supporting a variety of metric types and allowing for efficient data handling. Core features include the ability to add prefixes to metrics for better identification, customizable timeouts for API requests, and support for proxy settings to enhance connectivity. It is essential for users to configure these options according to their requirements, enabling seamless data flow into New Relic for comprehensive real-time analytics and insights.

Configuration

Cisco Model-Driven Telemetry

[[inputs.cisco_telemetry_mdt]]
 ## Telemetry transport can be "tcp" or "grpc".  TLS is only supported when
 ## using the grpc transport.
 transport = "grpc"

 ## Address and port to host telemetry listener
 service_address = ":57000"

 ## Grpc Maximum Message Size, default is 4MB, increase the size. This is
 ## stored as a uint32, and limited to 4294967295.
 max_msg_size = 4000000

 ## Enable TLS; grpc transport only.
 # tls_cert = "/etc/telegraf/cert.pem"
 # tls_key = "/etc/telegraf/key.pem"

 ## Enable TLS client authentication and define allowed CA certificates; grpc
 ##  transport only.
 # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

 ## Define (for certain nested telemetry measurements with embedded tags) which fields are tags
 # embedded_tags = ["Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface/input/service-policy-names/service-policy-instance/statistics/class-stats/class-name"]

 ## Include the delete field in every telemetry message.
 # include_delete_field = false

 ## Specify custom name for incoming MDT source field.
 # source_field_name = "mdt_source"

 ## Define aliases to map telemetry encoding paths to simple measurement names
 [inputs.cisco_telemetry_mdt.aliases]
   ifstats = "ietf-interfaces:interfaces-state/interface/statistics"
 ## Define Property Xformation, please refer README and https://pubhub.devnetcloud.com/media/dme-docs-9-3-3/docs/appendix/ for Model details.
 [inputs.cisco_telemetry_mdt.dmes]
#    Global Property Xformation.
#    prop1 = "uint64 to int"
#    prop2 = "uint64 to string"
#    prop3 = "string to uint64"
#    prop4 = "string to int64"
#    prop5 = "string to float64"
#    auto-prop-xfrom = "auto-float-xfrom" #Xform any property which is string, and has float number to type float64
#    Per Path property xformation, Name is telemetry configuration under sensor-group, path configuration "WORD         Distinguished Name"
#    Per Path configuration is better as it avoid property collision issue of types.
#    dnpath = '{"Name": "show ip route summary","prop": [{"Key": "routes","Value": "string"}, {"Key": "best-paths","Value": "string"}]}'
#    dnpath2 = '{"Name": "show processes cpu","prop": [{"Key": "kernel_percent","Value": "float"}, {"Key": "idle_percent","Value": "float"}, {"Key": "process","Value": "string"}, {"Key": "user_percent","Value": "float"}, {"Key": "onesec","Value": "float"}]}'
#    dnpath3 = '{"Name": "show processes memory physical","prop": [{"Key": "processname","Value": "string"}]}'

 ## Additional GRPC connection settings.
 [inputs.cisco_telemetry_mdt.grpc_enforcement_policy]
  ## GRPC permit keepalives without calls, set to true if your clients are
  ## sending pings without calls in-flight. This can sometimes happen on IOS-XE
  ## devices where the GRPC connection is left open but subscriptions have been
  ## removed, and adding subsequent subscriptions does not keep a stable session.
  # permit_keepalive_without_calls = false

  ## GRPC minimum timeout between successive pings, decreasing this value may
  ## help if this plugin is closing connections with ENHANCE_YOUR_CALM (too_many_pings).
  # keepalive_minimum_time = "5m"

New Relic

[[outputs.newrelic]]
  ## The 'insights_key' parameter requires a NR license key.
  ## New Relic recommends you create one
  ## with a convenient name such as TELEGRAF_INSERT_KEY.
  ## reference: https://docs.newrelic.com/docs/apis/intro-apis/new-relic-api-keys/#ingest-license-key
  # insights_key = "New Relic License Key Here"

  ## Prefix to add to add to metric name for easy identification.
  ## This is very useful if your metric names are ambiguous.
  # metric_prefix = ""

  ## Timeout for writes to the New Relic API.
  # timeout = "15s"

  ## HTTP Proxy override. If unset use values from the standard
  ## proxy environment variables to determine proxy, if any.
  # http_proxy = "http://corporate.proxy:3128"

  ## Metric URL override to enable geographic location endpoints.
  # If not set use values from the standard
  # metric_url = "https://metric-api.newrelic.com/metric/v1"

Input and output integration examples

Cisco Model-Driven Telemetry

  1. Real-Time Network Monitoring: Utilize the Cisco MDT plugin to collect network performance metrics from Cisco routers and switches. By feeding telemetry data into a visualization tool, network operators can observe traffic trends, bandwidth usage, and error rates in real-time. This proactive monitoring allows teams to swiftly address issues before they affect network performance, resulting in a more reliable service.

  2. Automated Anomaly Detection: Integrate Cisco MDT with machine learning algorithms to create an automated anomaly detection system. By continuously analyzing telemetry data, the system can identify deviations from typical operational patterns, providing alerts for unusual conditions that may signify network problems or security threats, which can aid in maintaining operational integrity.

  3. Dynamic Configuration Management: Leveraging the telemetry data collected from Cisco devices, organizations can implement dynamic configuration management solutions that automatically adjust network settings based on current performance indicators. For instance, if the telemetry indicates high utilization on certain links, the system could dynamically route traffic to underutilized paths, optimizing resource usage.

  4. Enhanced Reporting and Analytics: Use the Cisco MDT plugin to feed detailed telemetry data into analytics platforms, enabling comprehensive reporting on network health and performance. Historical and real-time analysis can guide decision-making and strategic planning, helping organizations to allocate resources more effectively and understand their network’s operational landscape better.

New Relic

  1. Application Performance Monitoring: Use the New Relic Telegraf plugin to send application performance metrics from a web service to New Relic Insights. By integrating this plugin, developers can collect data such as response times, error rates, and throughput, enabling teams to monitor application health in real-time and resolve issues quickly before they impact users. This setup promotes proactive management of application performance and user experience.

  2. Infrastructure Metrics Aggregation: Leverage this plugin to aggregate and send system-level metrics (CPU usage, memory consumption, etc.) from various servers to New Relic. This helps system administrators maintain an comprehensive view of infrastructure performance, facilitating capacity planning and identifying potential bottlenecks. By centralizing metrics in New Relic, teams can visualize trends over time and make informed decisions regarding resource allocation.

  3. Dynamic Metric Naming for Multi-tenant Applications: Implement dynamic prefixing with the metric_prefix option to differentiate between different tenants in a multi-tenant application. By configuring the plugin to include a unique identifier per tenant in the metric names, teams can analyze usage patterns and performance metrics per tenant. This provides valuable insights into tenant behavior, supporting tailored optimizations and enhancing service quality across different customer segments.

  4. Real-time Anomaly Detection: Combine the New Relic plugin with alerting mechanisms to trigger notifications based on unusual metric patterns. By sending metrics such as request counts and response times, teams can set thresholds in New Relic that, when breached, will automatically alert responsible parties. This user-driven approach supports immediate responses to potential issues before they escalate into larger incidents.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration