Cisco Model-Driven Telemetry and SigNoz Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Cisco MDT and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Cisco Model-Driven Telemetry (MDT) plugin facilitates the collection of telemetry data from Cisco networking platforms, utilizing gRPC and TCP transport mechanisms. This plugin is essential for users looking to implement advanced telemetry solutions for better insights and operational efficiency.

This configuration turns any Telegraf agent into a Remote Write publisher for SigNoz, streaming rich metrics straight into the SigNoz backend with a single URL change.

Integration details

Cisco Model-Driven Telemetry

Cisco model-driven telemetry (MDT) is designed to provide a robust means of consuming telemetry data from various Cisco platforms, including IOS XR, IOS XE, and NX-OS. This plugin focuses on the efficient transport of telemetry data using either TCP or gRPC protocols, offering flexibility based on the network environment and requirements. The gRPC transport is particularly advantageous as it supports TLS for enhanced security through encryption and authentication. The plugin is compatible with a range of software versions on Cisco devices, enabling organizations to leverage telemetry capabilities across their network operations. It is especially useful for network monitoring and analytics, as it enables real-time data collection directly from Cisco devices, enhancing visibility into network performance, resource utilization, and operational metrics.

SigNoz

SigNoz is an open source observability platform that stores metrics, traces, and logs. When you deploy SigNoz, its signoz-otel-collector-metrics service exposes a Prometheus Remote Write receiver (default :13133/api/v1/write). By configuring Telegraf’s Prometheus plugin to point at this endpoint, you can push any Telegraf collected metrics, SNMP counters, cloud services, or business KPIs—directly into SigNoz. The plugin natively serializes metrics in the Remote Write protobuf format, supports external labels, metadata export, retries, and TLS or bearer-token auth, so it fits zero-trust and multi-tenant SigNoz clusters. Inside SigNoz, the data lands in ClickHouse tables that back Metrics Explorer, alert rules, and unified dashboards. This approach lets organizations unify Prometheus and OTLP pipelines, enables long-term retention powered by ClickHouse compression, and avoids vendor lock-in while retaining PromQL-style queries.

Configuration

Cisco Model-Driven Telemetry

[[inputs.cisco_telemetry_mdt]]
 ## Telemetry transport can be "tcp" or "grpc".  TLS is only supported when
 ## using the grpc transport.
 transport = "grpc"

 ## Address and port to host telemetry listener
 service_address = ":57000"

 ## Grpc Maximum Message Size, default is 4MB, increase the size. This is
 ## stored as a uint32, and limited to 4294967295.
 max_msg_size = 4000000

 ## Enable TLS; grpc transport only.
 # tls_cert = "/etc/telegraf/cert.pem"
 # tls_key = "/etc/telegraf/key.pem"

 ## Enable TLS client authentication and define allowed CA certificates; grpc
 ##  transport only.
 # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

 ## Define (for certain nested telemetry measurements with embedded tags) which fields are tags
 # embedded_tags = ["Cisco-IOS-XR-qos-ma-oper:qos/interface-table/interface/input/service-policy-names/service-policy-instance/statistics/class-stats/class-name"]

 ## Include the delete field in every telemetry message.
 # include_delete_field = false

 ## Specify custom name for incoming MDT source field.
 # source_field_name = "mdt_source"

 ## Define aliases to map telemetry encoding paths to simple measurement names
 [inputs.cisco_telemetry_mdt.aliases]
   ifstats = "ietf-interfaces:interfaces-state/interface/statistics"
 ## Define Property Xformation, please refer README and https://pubhub.devnetcloud.com/media/dme-docs-9-3-3/docs/appendix/ for Model details.
 [inputs.cisco_telemetry_mdt.dmes]
#    Global Property Xformation.
#    prop1 = "uint64 to int"
#    prop2 = "uint64 to string"
#    prop3 = "string to uint64"
#    prop4 = "string to int64"
#    prop5 = "string to float64"
#    auto-prop-xfrom = "auto-float-xfrom" #Xform any property which is string, and has float number to type float64
#    Per Path property xformation, Name is telemetry configuration under sensor-group, path configuration "WORD         Distinguished Name"
#    Per Path configuration is better as it avoid property collision issue of types.
#    dnpath = '{"Name": "show ip route summary","prop": [{"Key": "routes","Value": "string"}, {"Key": "best-paths","Value": "string"}]}'
#    dnpath2 = '{"Name": "show processes cpu","prop": [{"Key": "kernel_percent","Value": "float"}, {"Key": "idle_percent","Value": "float"}, {"Key": "process","Value": "string"}, {"Key": "user_percent","Value": "float"}, {"Key": "onesec","Value": "float"}]}'
#    dnpath3 = '{"Name": "show processes memory physical","prop": [{"Key": "processname","Value": "string"}]}'

 ## Additional GRPC connection settings.
 [inputs.cisco_telemetry_mdt.grpc_enforcement_policy]
  ## GRPC permit keepalives without calls, set to true if your clients are
  ## sending pings without calls in-flight. This can sometimes happen on IOS-XE
  ## devices where the GRPC connection is left open but subscriptions have been
  ## removed, and adding subsequent subscriptions does not keep a stable session.
  # permit_keepalive_without_calls = false

  ## GRPC minimum timeout between successive pings, decreasing this value may
  ## help if this plugin is closing connections with ENHANCE_YOUR_CALM (too_many_pings).
  # keepalive_minimum_time = "5m"

SigNoz

[[outputs.prometheusremotewrite]]
  ## SigNoz OTEL-Collector metrics endpoint (Prometheus Remote Write receiver)
  ## Default port is 13133 when you install SigNoz with the Helm chart
  url = "http://signoz-otel-collector-metrics.monitoring.svc.cluster.local:13133/api/v1/write"

  ## Add identifying labels so you can slice & dice the data later
  external_labels = { host = "${HOSTNAME}", agent = "telegraf" }

  ## Forward host metadata for richer dashboards (SigNoz maps these to ClickHouse columns)
  send_metadata = true

  ## ----- Authentication (comment out what you don’t need) -----
  # bearer_token   = "$SIGNOZ_TOKEN"          # SaaS tenant token
  # basic_username = "signoz"                 # Basic auth (self-hosted)
  # basic_password = "secret"

  ## ----- TLS options (for SaaS or HTTPS self-hosted) -----
  # tls_ca                  = "/etc/ssl/certs/ca.crt"
  # tls_cert                = "/etc/telegraf/certs/telegraf.crt"
  # tls_key                 = "/etc/telegraf/certs/telegraf.key"
  # insecure_skip_verify    = false

  ## ----- Performance tuning -----
  max_batch_size = 10000      # samples per POST
  timeout        = "10s"
  retry_max      = 3

Input and output integration examples

Cisco Model-Driven Telemetry

  1. Real-Time Network Monitoring: Utilize the Cisco MDT plugin to collect network performance metrics from Cisco routers and switches. By feeding telemetry data into a visualization tool, network operators can observe traffic trends, bandwidth usage, and error rates in real-time. This proactive monitoring allows teams to swiftly address issues before they affect network performance, resulting in a more reliable service.

  2. Automated Anomaly Detection: Integrate Cisco MDT with machine learning algorithms to create an automated anomaly detection system. By continuously analyzing telemetry data, the system can identify deviations from typical operational patterns, providing alerts for unusual conditions that may signify network problems or security threats, which can aid in maintaining operational integrity.

  3. Dynamic Configuration Management: Leveraging the telemetry data collected from Cisco devices, organizations can implement dynamic configuration management solutions that automatically adjust network settings based on current performance indicators. For instance, if the telemetry indicates high utilization on certain links, the system could dynamically route traffic to underutilized paths, optimizing resource usage.

  4. Enhanced Reporting and Analytics: Use the Cisco MDT plugin to feed detailed telemetry data into analytics platforms, enabling comprehensive reporting on network health and performance. Historical and real-time analysis can guide decision-making and strategic planning, helping organizations to allocate resources more effectively and understand their network’s operational landscape better.

SigNoz

  1. Multi-Cluster Federated Monitoring: Drop a Telegraf DaemonSet into each Kubernetes cluster, tag metrics with cluster=<name>, and Remote Write them to a central SigNoz instance. Ops teams get a single PromQL window across prod, staging, and edge clusters without running Thanos sidecars.

  2. Factory-Floor Edge Gateway: A rugged Intel NUC on the shop floor runs Telegraf to scrape Modbus PLCs and environmental sensors. It batches readings every 5 seconds and pushes them over an intermittent 4G link to SigNoz SaaS. ClickHouse compression keeps costs low while AI-based outlier detection in SigNoz flags overheating motors before failure.

  3. SaaS Usage Metering: Telegraf runs alongside each micro-service, exporting per-tenant counters (api_calls, gigabytes_processed). Remote Write streams the data to SigNoz where a scheduled ClickHouse materialized view aggregates usage for monthly billing—no separate metering stack required.

  4. Autoscaling Feedback Loop: Combine Telegraf’s Kubernetes input with the Remote Write output to publish granular pod CPU and queue-length metrics into SigNoz. A custom SigNoz alert fires when P95 latency breaches 200 ms and a GitOps controller reads that alert to trigger a HorizontalPodAutoscaler tweak—closing the loop between observability and automation.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration