ctrlX Data Layer and IoTDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider ctrlX data layer and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The ctrlX plugin is designed to gather data seamlessly from the ctrlX Data Layer middleware, widely used in industrial automation.

This plugin saves Telegraf metrics to an Apache IoTDB backend, supporting session connection and data insertion.

Integration details

ctrlX Data Layer

The ctrlX Telegraf plugin provides a means to gather data from the ctrlX Data Layer, a communication middleware designed for professional automation applications. This plugin allows users to connect to ctrlX CORE devices, enabling the collection and monitoring of various metrics related to industrial and building automation, robotics, and IoT. The configuration options allow for detailed specifications of connection settings, subscription properties, and sampling rates, facilitating effective integration with the ctrlX Data Layer to meet customized monitoring needs, while leveraging the unique capabilities of the ctrlX platform.

IoTDB

Apache IoTDB (Database for Internet of Things) is an IoT native database with high performance for data management and analysis, deployable on the edge and the cloud. Its light-weight architecture, high performance, and rich feature set create a perfect fit for massive data storage, high-speed data ingestion, and complex analytics in the IoT industrial fields. IoTDB deeply integrates with Apache Hadoop, Spark, and Flink, which further enhances its capabilities in handling large scale data and sophisticated processing tasks.

Configuration

ctrlX Data Layer

[[inputs.ctrlx_datalayer]]
   ## Hostname or IP address of the ctrlX CORE Data Layer server
   ##  example: server = "localhost"        # Telegraf is running directly on the device
   ##           server = "192.168.1.1"      # Connect to ctrlX CORE remote via IP
   ##           server = "host.example.com" # Connect to ctrlX CORE remote via hostname
   ##           server = "10.0.2.2:8443"    # Connect to ctrlX CORE Virtual from development environment
   server = "localhost"

   ## Authentication credentials
   username = "boschrexroth"
   password = "boschrexroth"

   ## Use TLS but skip chain & host verification
   # insecure_skip_verify = false

   ## Timeout for HTTP requests. (default: "10s")
   # timeout = "10s"


   ## Create a ctrlX Data Layer subscription.
   ## It is possible to define multiple subscriptions per host. Each subscription can have its own
   ## sampling properties and a list of nodes to subscribe to.
   ## All subscriptions share the same credentials.
   [[inputs.ctrlx_datalayer.subscription]]
      ## The name of the measurement. (default: "ctrlx")
      measurement = "memory"

      ## Configure the ctrlX Data Layer nodes which should be subscribed.
      ## address - node address in ctrlX Data Layer (mandatory)
      ## name    - field name to use in the output (optional, default: base name of address)
      ## tags    - extra node tags to be added to the output metric (optional)
      ## Note: 
      ## Use either the inline notation or the bracketed notation, not both.
      ## The tags property is only supported in bracketed notation due to toml parser restrictions
      ## Examples:
      ## Inline notation 
      nodes=[
         {name="available", address="framework/metrics/system/memavailable-mb"},
         {name="used", address="framework/metrics/system/memused-mb"},
      ]
      ## Bracketed notation
      # [[inputs.ctrlx_datalayer.subscription.nodes]]
      #    name   ="available"
      #    address="framework/metrics/system/memavailable-mb"
      #    ## Define extra tags related to node to be added to the output metric (optional)
      #    [inputs.ctrlx_datalayer.subscription.nodes.tags]
      #       node_tag1="node_tag1"
      #       node_tag2="node_tag2"
      # [[inputs.ctrlx_datalayer.subscription.nodes]]
      #    name   ="used"
      #    address="framework/metrics/system/memused-mb"

      ## The switch "output_json_string" enables output of the measurement as json. 
      ## That way it can be used in in a subsequent processor plugin, e.g. "Starlark Processor Plugin".
      # output_json_string = false

      ## Define extra tags related to subscription to be added to the output metric (optional)
      # [inputs.ctrlx_datalayer.subscription.tags]
      #    subscription_tag1 = "subscription_tag1"
      #    subscription_tag2 = "subscription_tag2"

      ## The interval in which messages shall be sent by the ctrlX Data Layer to this plugin. (default: 1s)
      ## Higher values reduce load on network by queuing samples on server side and sending as a single TCP packet.
      # publish_interval = "1s"

      ## The interval a "keepalive" message is sent if no change of data occurs. (default: 60s)
      ## Only used internally to detect broken network connections.
      # keep_alive_interval = "60s"

      ## The interval an "error" message is sent if an error was received from a node. (default: 10s)
      ## Higher values reduce load on output target and network in case of errors by limiting frequency of error messages.
      # error_interval = "10s"

      ## The interval that defines the fastest rate at which the node values should be sampled and values captured. (default: 1s)
      ## The sampling frequency should be adjusted to the dynamics of the signal to be sampled.
      ## Higher sampling frequencies increases load on ctrlX Data Layer.
      ## The sampling frequency can be higher, than the publish interval. Captured samples are put in a queue and sent in publish interval.
      ## Note: The minimum sampling interval can be overruled by a global setting in the ctrlX Data Layer configuration ('datalayer/subscriptions/settings').
      # sampling_interval = "1s"

      ## The requested size of the node value queue. (default: 10)
      ## Relevant if more values are captured than can be sent.
      # queue_size = 10

      ## The behaviour of the queue if it is full. (default: "DiscardOldest")
      ## Possible values: 
      ## - "DiscardOldest"
      ##   The oldest value gets deleted from the queue when it is full.
      ## - "DiscardNewest"
      ##   The newest value gets deleted from the queue when it is full.
      # queue_behaviour = "DiscardOldest"

      ## The filter when a new value will be sampled. (default: 0.0)
      ## Calculation rule: If (abs(lastCapturedValue - newValue) > dead_band_value) capture(newValue).
      # dead_band_value = 0.0

      ## The conditions on which a sample should be captured and thus will be sent as a message. (default: "StatusValue")
      ## Possible values:
      ## - "Status"
      ##   Capture the value only, when the state of the node changes from or to error state. Value changes are ignored.
      ## - "StatusValue" 
      ##   Capture when the value changes or the node changes from or to error state.
      ##   See also 'dead_band_value' for what is considered as a value change.
      ## - "StatusValueTimestamp": 
      ##   Capture even if the value is the same, but the timestamp of the value is newer.
      ##   Note: This might lead to high load on the network because every sample will be sent as a message
      ##   even if the value of the node did not change.
      # value_change = "StatusValue"

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

Input and output integration examples

ctrlX Data Layer

  1. Industrial Automation Monitoring: Utilize this plugin to continuously monitor key performance indicators from a manufacturing system controlled by ctrlX CORE devices. By subscribing to specific data nodes that provide real-time metrics such as resource availability or machine uptime, manufacturers can dynamically adjust their operations for increased efficiency and minimal downtime.

  2. Energy Consumption Analysis: Collect energy consumption data from IoT-enabled ctrlX CORE platforms in a smart building setup. By analyzing trends and patterns in energy use, facility managers can optimize operating strategies, reduce energy costs, and support sustainability initiatives, making informed decisions about resource allocation and predictive maintenance.

  3. Predictive Maintenance for Robotics: Gather telemetry data from robotics applications deployed in warehousing environments. By monitoring vibration, temperature, and operational parameters in real-time, organizations can predict equipment failures before they occur, leading to reduced maintenance costs and enhanced robotic system uptime through timely interventions.

  4. Cross-Platform Data Integration: Connect data gathered from ctrlX CORE devices into a centralized Cloud data warehouse using this plugin. By streaming real-time metrics to other systems, organizations can create a unified view of operational performance across various manufacturing and operational systems, enabling data-driven decision-making across diverse platforms.

IoTDB

  1. Real-Time IoT Monitoring: Utilize the IoTDB plugin to gather sensor data from various IoT devices and save it in an Apache IoTDB backend, facilitating real-time monitoring of environmental conditions such as temperature and humidity. This use case enables organizations to analyze trends over time and make informed decisions based on historical data, while also utilizing IoTDB’s efficient storage and querying capabilities.

  2. Smart Agriculture Data Collection: Use the IoTDB plugin to collect metrics from smart agriculture sensors deployed in fields. By transmitting moisture levels, nutrient content, and atmospheric conditions to IoTDB, farmers can access detailed insights into optimal planting and watering schedules, thus improving crop yields and resource management.

  3. Energy Consumption Analytics: Leverage the IoTDB plugin to track energy consumption metrics from smart meters across a utility network. This integration enables analytics to identify peaks in usage and predict future consumption patterns, ultimately supporting energy conservation initiatives and improved utility management.

  4. Automated Industrial Equipment Monitoring: Use this plugin to gather operational metrics from machinery in a manufacturing plant and store them in IoTDB for analysis. This setup can help identify inefficiencies, predictive maintenance needs, and operational anomalies, ensuring optimal performance and minimizing unexpected downtimes.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration