ctrlX Data Layer and OpenSearch Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The ctrlX plugin is designed to gather data seamlessly from the ctrlX Data Layer middleware, widely used in industrial automation.
The OpenSearch Output Plugin allows users to send metrics directly to an OpenSearch instance using HTTP, thus facilitating effective data management and analytics within the OpenSearch ecosystem.
Integration details
ctrlX Data Layer
The ctrlX Telegraf plugin provides a means to gather data from the ctrlX Data Layer, a communication middleware designed for professional automation applications. This plugin allows users to connect to ctrlX CORE devices, enabling the collection and monitoring of various metrics related to industrial and building automation, robotics, and IoT. The configuration options allow for detailed specifications of connection settings, subscription properties, and sampling rates, facilitating effective integration with the ctrlX Data Layer to meet customized monitoring needs, while leveraging the unique capabilities of the ctrlX platform.
OpenSearch
The OpenSearch Telegraf Plugin integrates with the OpenSearch database via HTTP, allowing for the streamlined collection and storage of metrics. As a powerful tool designed specifically for OpenSearch releases from 2.x, the plugin provides robust features while offering compatibility with 1.x through the original Elasticsearch plugin. This plugin facilitates the creation and management of indexes in OpenSearch, automatically managing templates and ensuring that data is structured efficiently for analysis. The plugin supports various configuration options such as index names, authentication, health checks, and value handling, allowing it to be tailored to diverse operational requirements. Its capabilities make it essential for organizations looking to harness the power of OpenSearch for metrics storage and querying.
Configuration
ctrlX Data Layer
[[inputs.ctrlx_datalayer]]
## Hostname or IP address of the ctrlX CORE Data Layer server
## example: server = "localhost" # Telegraf is running directly on the device
## server = "192.168.1.1" # Connect to ctrlX CORE remote via IP
## server = "host.example.com" # Connect to ctrlX CORE remote via hostname
## server = "10.0.2.2:8443" # Connect to ctrlX CORE Virtual from development environment
server = "localhost"
## Authentication credentials
username = "boschrexroth"
password = "boschrexroth"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Timeout for HTTP requests. (default: "10s")
# timeout = "10s"
## Create a ctrlX Data Layer subscription.
## It is possible to define multiple subscriptions per host. Each subscription can have its own
## sampling properties and a list of nodes to subscribe to.
## All subscriptions share the same credentials.
[[inputs.ctrlx_datalayer.subscription]]
## The name of the measurement. (default: "ctrlx")
measurement = "memory"
## Configure the ctrlX Data Layer nodes which should be subscribed.
## address - node address in ctrlX Data Layer (mandatory)
## name - field name to use in the output (optional, default: base name of address)
## tags - extra node tags to be added to the output metric (optional)
## Note:
## Use either the inline notation or the bracketed notation, not both.
## The tags property is only supported in bracketed notation due to toml parser restrictions
## Examples:
## Inline notation
nodes=[
{name="available", address="framework/metrics/system/memavailable-mb"},
{name="used", address="framework/metrics/system/memused-mb"},
]
## Bracketed notation
# [[inputs.ctrlx_datalayer.subscription.nodes]]
# name ="available"
# address="framework/metrics/system/memavailable-mb"
# ## Define extra tags related to node to be added to the output metric (optional)
# [inputs.ctrlx_datalayer.subscription.nodes.tags]
# node_tag1="node_tag1"
# node_tag2="node_tag2"
# [[inputs.ctrlx_datalayer.subscription.nodes]]
# name ="used"
# address="framework/metrics/system/memused-mb"
## The switch "output_json_string" enables output of the measurement as json.
## That way it can be used in in a subsequent processor plugin, e.g. "Starlark Processor Plugin".
# output_json_string = false
## Define extra tags related to subscription to be added to the output metric (optional)
# [inputs.ctrlx_datalayer.subscription.tags]
# subscription_tag1 = "subscription_tag1"
# subscription_tag2 = "subscription_tag2"
## The interval in which messages shall be sent by the ctrlX Data Layer to this plugin. (default: 1s)
## Higher values reduce load on network by queuing samples on server side and sending as a single TCP packet.
# publish_interval = "1s"
## The interval a "keepalive" message is sent if no change of data occurs. (default: 60s)
## Only used internally to detect broken network connections.
# keep_alive_interval = "60s"
## The interval an "error" message is sent if an error was received from a node. (default: 10s)
## Higher values reduce load on output target and network in case of errors by limiting frequency of error messages.
# error_interval = "10s"
## The interval that defines the fastest rate at which the node values should be sampled and values captured. (default: 1s)
## The sampling frequency should be adjusted to the dynamics of the signal to be sampled.
## Higher sampling frequencies increases load on ctrlX Data Layer.
## The sampling frequency can be higher, than the publish interval. Captured samples are put in a queue and sent in publish interval.
## Note: The minimum sampling interval can be overruled by a global setting in the ctrlX Data Layer configuration ('datalayer/subscriptions/settings').
# sampling_interval = "1s"
## The requested size of the node value queue. (default: 10)
## Relevant if more values are captured than can be sent.
# queue_size = 10
## The behaviour of the queue if it is full. (default: "DiscardOldest")
## Possible values:
## - "DiscardOldest"
## The oldest value gets deleted from the queue when it is full.
## - "DiscardNewest"
## The newest value gets deleted from the queue when it is full.
# queue_behaviour = "DiscardOldest"
## The filter when a new value will be sampled. (default: 0.0)
## Calculation rule: If (abs(lastCapturedValue - newValue) > dead_band_value) capture(newValue).
# dead_band_value = 0.0
## The conditions on which a sample should be captured and thus will be sent as a message. (default: "StatusValue")
## Possible values:
## - "Status"
## Capture the value only, when the state of the node changes from or to error state. Value changes are ignored.
## - "StatusValue"
## Capture when the value changes or the node changes from or to error state.
## See also 'dead_band_value' for what is considered as a value change.
## - "StatusValueTimestamp":
## Capture even if the value is the same, but the timestamp of the value is newer.
## Note: This might lead to high load on the network because every sample will be sent as a message
## even if the value of the node did not change.
# value_change = "StatusValue"
OpenSearch
[[outputs.opensearch]]
## URLs
## The full HTTP endpoint URL for your OpenSearch instance. Multiple URLs can
## be specified as part of the same cluster, but only one URLs is used to
## write during each interval.
urls = ["http://node1.os.example.com:9200"]
## Index Name
## Target index name for metrics (OpenSearch will create if it not exists).
## This is a Golang template (see https://pkg.go.dev/text/template)
## You can also specify
## metric name (`{{.Name}}`), tag value (`{{.Tag "tag_name"}}`), field value (`{{.Field "field_name"}}`)
## If the tag does not exist, the default tag value will be empty string "".
## the timestamp (`{{.Time.Format "xxxxxxxxx"}}`).
## For example: "telegraf-{{.Time.Format \"2006-01-02\"}}-{{.Tag \"host\"}}" would set it to telegraf-2023-07-27-HostName
index_name = ""
## Timeout
## OpenSearch client timeout
# timeout = "5s"
## Sniffer
## Set to true to ask OpenSearch a list of all cluster nodes,
## thus it is not necessary to list all nodes in the urls config option
# enable_sniffer = false
## GZIP Compression
## Set to true to enable gzip compression
# enable_gzip = false
## Health Check Interval
## Set the interval to check if the OpenSearch nodes are available
## Setting to "0s" will disable the health check (not recommended in production)
# health_check_interval = "10s"
## Set the timeout for periodic health checks.
# health_check_timeout = "1s"
## HTTP basic authentication details.
# username = ""
# password = ""
## HTTP bearer token authentication details
# auth_bearer_token = ""
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Template Config
## Manage templates
## Set to true if you want telegraf to manage its index template.
## If enabled it will create a recommended index template for telegraf indexes
# manage_template = true
## Template Name
## The template name used for telegraf indexes
# template_name = "telegraf"
## Overwrite Templates
## Set to true if you want telegraf to overwrite an existing template
# overwrite_template = false
## Document ID
## If set to true a unique ID hash will be sent as
## sha256(concat(timestamp,measurement,series-hash)) string. It will enable
## data resend and update metric points avoiding duplicated metrics with
## different id's
# force_document_id = false
## Value Handling
## Specifies the handling of NaN and Inf values.
## This option can have the following values:
## none -- do not modify field-values (default); will produce an error
## if NaNs or infs are encountered
## drop -- drop fields containing NaNs or infs
## replace -- replace with the value in "float_replacement_value" (default: 0.0)
## NaNs and inf will be replaced with the given number, -inf with the negative of that number
# float_handling = "none"
# float_replacement_value = 0.0
## Pipeline Config
## To use a ingest pipeline, set this to the name of the pipeline you want to use.
# use_pipeline = "my_pipeline"
## Pipeline Name
## Additionally, you can specify a tag name using the notation (`{{.Tag "tag_name"}}`)
## which will be used as the pipeline name (e.g. "{{.Tag \"os_pipeline\"}}").
## If the tag does not exist, the default pipeline will be used as the pipeline.
## If no default pipeline is set, no pipeline is used for the metric.
# default_pipeline = ""
Input and output integration examples
ctrlX Data Layer
-
Industrial Automation Monitoring: Utilize this plugin to continuously monitor key performance indicators from a manufacturing system controlled by ctrlX CORE devices. By subscribing to specific data nodes that provide real-time metrics such as resource availability or machine uptime, manufacturers can dynamically adjust their operations for increased efficiency and minimal downtime.
-
Energy Consumption Analysis: Collect energy consumption data from IoT-enabled ctrlX CORE platforms in a smart building setup. By analyzing trends and patterns in energy use, facility managers can optimize operating strategies, reduce energy costs, and support sustainability initiatives, making informed decisions about resource allocation and predictive maintenance.
-
Predictive Maintenance for Robotics: Gather telemetry data from robotics applications deployed in warehousing environments. By monitoring vibration, temperature, and operational parameters in real-time, organizations can predict equipment failures before they occur, leading to reduced maintenance costs and enhanced robotic system uptime through timely interventions.
-
Cross-Platform Data Integration: Connect data gathered from ctrlX CORE devices into a centralized Cloud data warehouse using this plugin. By streaming real-time metrics to other systems, organizations can create a unified view of operational performance across various manufacturing and operational systems, enabling data-driven decision-making across diverse platforms.
OpenSearch
-
Dynamic Indexing for Time-Series Data: Utilize the OpenSearch Telegraf plugin to dynamically create indexes for time-series metrics, ensuring that data is stored in an organized manner conducive to time-based queries. By defining index patterns using Go templates, users can leverage the plugin to create daily or monthly indexes, which can greatly simplify data management and retrieval over time, thus enhancing analytical performance.
-
Centralized Logging for Multi-Tenant Applications: Implement the OpenSearch plugin in a multi-tenant application where each tenant’s logs are sent to separate indexes. This enables targeted analysis and monitoring for each tenant while maintaining data isolation. By utilizing the index name templating feature, users can automatically create tenant-specific indexes, which not only streamlines the process but also enhances security and accessibility for tenant data.
-
Integration with Machine Learning for Anomaly Detection: Leverage the OpenSearch plugin alongside machine learning tools to automatically detect anomalies in metrics data. By configuring the plugin to send real-time metrics to OpenSearch, users can apply machine learning models on the incoming data streams to identify outliers or unusual patterns, facilitating proactive monitoring and swift remedial actions.
-
Enhanced Monitoring Dashboards with OpenSearch: Use the metrics collected from OpenSearch to create real-time dashboards that provide insights into system performance. By feeding metrics into OpenSearch, organizations can utilize OpenSearch Dashboards to visualize key performance indicators, allowing operations teams to quickly assess health and performance, and making data-driven decisions.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration