ctrlX Data Layer and AWS Timestream Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider ctrlX data layer and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The ctrlX plugin is designed to gather data seamlessly from the ctrlX Data Layer middleware, widely used in industrial automation.

The AWS Timestream Telegraf plugin enables users to send metrics directly to Amazon’s Timestream service, which is designed for time series data management. This plugin offers a variety of configuration options for authentication, data organization, and retention settings.

Integration details

ctrlX Data Layer

The ctrlX Telegraf plugin provides a means to gather data from the ctrlX Data Layer, a communication middleware designed for professional automation applications. This plugin allows users to connect to ctrlX CORE devices, enabling the collection and monitoring of various metrics related to industrial and building automation, robotics, and IoT. The configuration options allow for detailed specifications of connection settings, subscription properties, and sampling rates, facilitating effective integration with the ctrlX Data Layer to meet customized monitoring needs, while leveraging the unique capabilities of the ctrlX platform.

AWS Timestream

This plugin is designed to efficiently write metrics to Amazon’s Timestream service, a time series database optimized for IoT and operational applications. With this plugin Telegraf can send data collected from various sources and supports a flexible configuration for authentication, data organization, and retention management. It utilizes a credential chain for authentication, allowing various methods such as web identity, assumed roles, and shared profiles. Users can define how metrics are organized in Timestream—whether to use a single table or multiple tables, alongside control over aspect such as retention periods for both magnetic and memory stores. A key feature is its ability to handle multi-measure records, enabling efficient data ingestion and helping to reduce the overhead of multiple writes. In terms of error handling, the plugin includes mechanisms for addressing common issues related to AWS errors during data writes, such as retry logic for throttling and the ability to create tables as needed.

Configuration

ctrlX Data Layer

[[inputs.ctrlx_datalayer]]
   ## Hostname or IP address of the ctrlX CORE Data Layer server
   ##  example: server = "localhost"        # Telegraf is running directly on the device
   ##           server = "192.168.1.1"      # Connect to ctrlX CORE remote via IP
   ##           server = "host.example.com" # Connect to ctrlX CORE remote via hostname
   ##           server = "10.0.2.2:8443"    # Connect to ctrlX CORE Virtual from development environment
   server = "localhost"

   ## Authentication credentials
   username = "boschrexroth"
   password = "boschrexroth"

   ## Use TLS but skip chain & host verification
   # insecure_skip_verify = false

   ## Timeout for HTTP requests. (default: "10s")
   # timeout = "10s"


   ## Create a ctrlX Data Layer subscription.
   ## It is possible to define multiple subscriptions per host. Each subscription can have its own
   ## sampling properties and a list of nodes to subscribe to.
   ## All subscriptions share the same credentials.
   [[inputs.ctrlx_datalayer.subscription]]
      ## The name of the measurement. (default: "ctrlx")
      measurement = "memory"

      ## Configure the ctrlX Data Layer nodes which should be subscribed.
      ## address - node address in ctrlX Data Layer (mandatory)
      ## name    - field name to use in the output (optional, default: base name of address)
      ## tags    - extra node tags to be added to the output metric (optional)
      ## Note: 
      ## Use either the inline notation or the bracketed notation, not both.
      ## The tags property is only supported in bracketed notation due to toml parser restrictions
      ## Examples:
      ## Inline notation 
      nodes=[
         {name="available", address="framework/metrics/system/memavailable-mb"},
         {name="used", address="framework/metrics/system/memused-mb"},
      ]
      ## Bracketed notation
      # [[inputs.ctrlx_datalayer.subscription.nodes]]
      #    name   ="available"
      #    address="framework/metrics/system/memavailable-mb"
      #    ## Define extra tags related to node to be added to the output metric (optional)
      #    [inputs.ctrlx_datalayer.subscription.nodes.tags]
      #       node_tag1="node_tag1"
      #       node_tag2="node_tag2"
      # [[inputs.ctrlx_datalayer.subscription.nodes]]
      #    name   ="used"
      #    address="framework/metrics/system/memused-mb"

      ## The switch "output_json_string" enables output of the measurement as json. 
      ## That way it can be used in in a subsequent processor plugin, e.g. "Starlark Processor Plugin".
      # output_json_string = false

      ## Define extra tags related to subscription to be added to the output metric (optional)
      # [inputs.ctrlx_datalayer.subscription.tags]
      #    subscription_tag1 = "subscription_tag1"
      #    subscription_tag2 = "subscription_tag2"

      ## The interval in which messages shall be sent by the ctrlX Data Layer to this plugin. (default: 1s)
      ## Higher values reduce load on network by queuing samples on server side and sending as a single TCP packet.
      # publish_interval = "1s"

      ## The interval a "keepalive" message is sent if no change of data occurs. (default: 60s)
      ## Only used internally to detect broken network connections.
      # keep_alive_interval = "60s"

      ## The interval an "error" message is sent if an error was received from a node. (default: 10s)
      ## Higher values reduce load on output target and network in case of errors by limiting frequency of error messages.
      # error_interval = "10s"

      ## The interval that defines the fastest rate at which the node values should be sampled and values captured. (default: 1s)
      ## The sampling frequency should be adjusted to the dynamics of the signal to be sampled.
      ## Higher sampling frequencies increases load on ctrlX Data Layer.
      ## The sampling frequency can be higher, than the publish interval. Captured samples are put in a queue and sent in publish interval.
      ## Note: The minimum sampling interval can be overruled by a global setting in the ctrlX Data Layer configuration ('datalayer/subscriptions/settings').
      # sampling_interval = "1s"

      ## The requested size of the node value queue. (default: 10)
      ## Relevant if more values are captured than can be sent.
      # queue_size = 10

      ## The behaviour of the queue if it is full. (default: "DiscardOldest")
      ## Possible values: 
      ## - "DiscardOldest"
      ##   The oldest value gets deleted from the queue when it is full.
      ## - "DiscardNewest"
      ##   The newest value gets deleted from the queue when it is full.
      # queue_behaviour = "DiscardOldest"

      ## The filter when a new value will be sampled. (default: 0.0)
      ## Calculation rule: If (abs(lastCapturedValue - newValue) > dead_band_value) capture(newValue).
      # dead_band_value = 0.0

      ## The conditions on which a sample should be captured and thus will be sent as a message. (default: "StatusValue")
      ## Possible values:
      ## - "Status"
      ##   Capture the value only, when the state of the node changes from or to error state. Value changes are ignored.
      ## - "StatusValue" 
      ##   Capture when the value changes or the node changes from or to error state.
      ##   See also 'dead_band_value' for what is considered as a value change.
      ## - "StatusValueTimestamp": 
      ##   Capture even if the value is the same, but the timestamp of the value is newer.
      ##   Note: This might lead to high load on the network because every sample will be sent as a message
      ##   even if the value of the node did not change.
      # value_change = "StatusValue"

AWS Timestream

[[outputs.timestream]]
  ## Amazon Region
  region = "us-east-1"

  ## Amazon Credentials
  ## Credentials are loaded in the following order:
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  #access_key = ""
  #secret_key = ""
  #token = ""
  #role_arn = ""
  #web_identity_token_file = ""
  #role_session_name = ""
  #profile = ""
  #shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Timestream database where the metrics will be inserted.
  ## The database must exist prior to starting Telegraf.
  database_name = "yourDatabaseNameHere"

  ## Specifies if the plugin should describe the Timestream database upon starting
  ## to validate if it has access necessary permissions, connection, etc., as a safety check.
  ## If the describe operation fails, the plugin will not start
  ## and therefore the Telegraf agent will not start.
  describe_database_on_start = false

  ## Specifies how the data is organized in Timestream.
  ## Valid values are: single-table, multi-table.
  ## When mapping_mode is set to single-table, all of the data is stored in a single table.
  ## When mapping_mode is set to multi-table, the data is organized and stored in multiple tables.
  ## The default is multi-table.
  mapping_mode = "multi-table"

  ## Specifies if the plugin should create the table, if the table does not exist.
  create_table_if_not_exists = true

  ## Specifies the Timestream table magnetic store retention period in days.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_magnetic_store_retention_period_in_days = 365

  ## Specifies the Timestream table memory store retention period in hours.
  ## Check Timestream documentation for more details.
  ## NOTE: This property is valid when create_table_if_not_exists = true.
  create_table_memory_store_retention_period_in_hours = 24

  ## Specifies how the data is written into Timestream.
  ## Valid values are: true, false
  ## When use_multi_measure_records is set to true, all of the tags and fields are stored
  ## as a single row in a Timestream table.
  ## When use_multi_measure_record is set to false, Timestream stores each field in a
  ## separate table row, thereby storing the tags multiple times (once for each field).
  ## The recommended setting is true.
  ## The default is false.
  use_multi_measure_records = "false"

  ## Specifies the measure_name to use when sending multi-measure records.
  ## NOTE: This property is valid when use_multi_measure_records=true and mapping_mode=multi-table
  measure_name_for_multi_measure_records = "telegraf_measure"

  ## Specifies the name of the table to write data into
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_name = ""

  ## Specifies the name of dimension when all of the data is being stored in a single table
  ## and the measurement name is transformed into the dimension value
  ## (see Mapping data from Influx to Timestream for details)
  ## NOTE: This property is valid when mapping_mode=single-table.
  # single_table_dimension_name_for_telegraf_measurement_name = "namespace"

  ## Only valid and optional if create_table_if_not_exists = true
  ## Specifies the Timestream table tags.
  ## Check Timestream documentation for more details
  # create_table_tags = { "foo" = "bar", "environment" = "dev"}

  ## Specify the maximum number of parallel go routines to ingest/write data
  ## If not specified, defaulted to 1 go routines
  max_write_go_routines = 25

  ## Please see README.md to know how line protocol data is mapped to Timestream
  ##

Input and output integration examples

ctrlX Data Layer

  1. Industrial Automation Monitoring: Utilize this plugin to continuously monitor key performance indicators from a manufacturing system controlled by ctrlX CORE devices. By subscribing to specific data nodes that provide real-time metrics such as resource availability or machine uptime, manufacturers can dynamically adjust their operations for increased efficiency and minimal downtime.

  2. Energy Consumption Analysis: Collect energy consumption data from IoT-enabled ctrlX CORE platforms in a smart building setup. By analyzing trends and patterns in energy use, facility managers can optimize operating strategies, reduce energy costs, and support sustainability initiatives, making informed decisions about resource allocation and predictive maintenance.

  3. Predictive Maintenance for Robotics: Gather telemetry data from robotics applications deployed in warehousing environments. By monitoring vibration, temperature, and operational parameters in real-time, organizations can predict equipment failures before they occur, leading to reduced maintenance costs and enhanced robotic system uptime through timely interventions.

  4. Cross-Platform Data Integration: Connect data gathered from ctrlX CORE devices into a centralized Cloud data warehouse using this plugin. By streaming real-time metrics to other systems, organizations can create a unified view of operational performance across various manufacturing and operational systems, enabling data-driven decision-making across diverse platforms.

AWS Timestream

  1. IoT Data Metrics: Use the Timestream plugin to send real-time metrics from IoT devices to Timestream, allowing for quick analysis and visualization of sensor data. By organizing device readings into a time series format, users can track trends, identify anomalies, and streamline operational decisions based on device performance.

  2. Application Performance Monitoring: Leverage Timestream alongside application monitoring tools to send metrics about service performance over time. This integration enables engineers to perform historical analysis of application performance, correlate it with business metrics, and optimize resource allocation based on usage patterns viewed over time.

  3. Automated Data Archiving: Configure the Timestream plugin to write data to Timestream while simultaneously managing retention periods. This setup can automate archiving strategies, ensuring that older data is preserved according to predefined criteria. This is especially useful for compliance and historical analysis, allowing businesses to maintain their data lifecycle with minimal manual intervention.

  4. Multi-Application Metrics Aggregation: Utilize the Timestream plugin to aggregate metrics from multiple applications into Timestream. By creating a unified database of performance metrics, organizations can gain holistic insights across various services, improving visibility into system-wide performance and facilitating cross-application troubleshooting.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration