DNS and DuckDB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider DNS and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The DNS plugin enables users to monitor and gather statistics on DNS query times, facilitating performance analysis of DNS resolutions.

This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.

Integration details

DNS

This plugin gathers DNS query times in milliseconds, utilizing the capabilities of DNS queries similar to the Dig command. It provides a means to monitor and analyze DNS performance by measuring the response time from specified DNS servers, allowing network administrators and engineers to ensure optimal DNS resolution times. The plugin can be configured to target specific servers and customize the types of records queried, encompassing various DNS features such as resolving domain names to IP addresses, or retrieving details from specific records as needed, while also clearly reporting on the success or failure of each query, alongside relevant metadata.

DuckDB

Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.

Configuration

DNS

[[inputs.dns_query]]
  servers = ["8.8.8.8"]

  # network = "udp"

  # domains = ["."]

  # record_type = "A"

  # port = 53

  # timeout = "2s"

  # include_fields = []
  

DuckDB

[[outputs.sql]]
  ## Use the SQLite driver to connect to DuckDB via Go's database/sql
  driver = "sqlite3"

  ## DSN should point to the DuckDB database file
  dsn = "file:/var/lib/telegraf/metrics.duckdb"

  ## SQL INSERT statement with placeholders for metrics
  table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"

  ## Optional: manage connection pooling
  # max_open_connections = 1
  # max_idle_connections = 1
  # conn_max_lifetime = "0s"

  ## DuckDB does not require TLS or authentication by default

Input and output integration examples

DNS

  1. Monitor DNS Performance for Multiple Servers: By deploying the DNS plugin, a user can simultaneously monitor the performance of different DNS servers, such as Google DNS and Cloudflare DNS, by specifying them in the servers array. This scenario enables comparisons of response times and reliability across different DNS providers, assisting in selecting the best option based on empirical data.

  2. Analyze Query Times for High-Traffic Domains: Integrate the plugin to measure response times specifically for high-traffic domains relevant to an organization’s operations, such as internal services or customer-facing sites. By focusing on performance metrics for these domains, organizations can proactively address latency issues, ensuring service reliability and improving user experiences.

  3. Alerting on DNS Timeouts: Utilize the plugin in combination with alerting systems to notify administrators whenever a DNS query exceeds a defined timeout threshold. This setup can help in proactive troubleshooting of networking issues or server misconfigurations, fostering a rapid response to potential downtime scenarios.

  4. Gather Historical Data for Performance Trends: Use the plugin to collect historical data on DNS query times over extended periods. This data can be used to analyze trends and patterns in DNS performance, enabling better capacity planning, identifying periodic issues, and justifying infrastructure upgrades or changes to DNS architectures.

DuckDB

  1. Embedded Metric Warehousing for Notebooks: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.

  2. Batch Time-Series Processing on the Edge: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.

  3. Exploratory Querying of Historical Metrics: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.

  4. Self-Contained Metric Snapshots: Use DuckDB as a portable metrics archive by shipping .duckdb files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration