Docker and Parquet Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Docker input plugin allows you to collect metrics from your Docker containers using the Docker Engine API, facilitating enhanced visibility and monitoring of containerized applications.
This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.
Integration details
Docker
The Docker input plugin for Telegraf gathers valuable metrics from the Docker Engine API, providing insights into running containers. This plugin utilizes the Official Docker Client to interface with the Engine API, allowing users to monitor various container states, resource allocations, and performance metrics. With options for filtering containers by names and states, along with customizable tags and labels, this plugin supports flexibility in monitoring containerized applications in diverse environments, whether on local systems or within orchestration platforms like Kubernetes. Additionally, it addresses security considerations by requiring permissions for accessing Docker’s daemon and emphasizes proper configuration when deploying within containerized environments.
Parquet
The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.
Configuration
Docker
[[inputs.docker]]
## Docker Endpoint
## To use TCP, set endpoint = "tcp://[ip]:[port]"
## To use environment variables (ie, docker-machine), set endpoint = "ENV"
endpoint = "unix:///var/run/docker.sock"
## Set to true to collect Swarm metrics(desired_replicas, running_replicas)
## Note: configure this in one of the manager nodes in a Swarm cluster.
## configuring in multiple Swarm managers results in duplication of metrics.
gather_services = false
## Only collect metrics for these containers. Values will be appended to
## container_name_include.
## Deprecated (1.4.0), use container_name_include
container_names = []
## Set the source tag for the metrics to the container ID hostname, eg first 12 chars
source_tag = false
## Containers to include and exclude. Collect all if empty. Globs accepted.
container_name_include = []
container_name_exclude = []
## Container states to include and exclude. Globs accepted.
## When empty only containers in the "running" state will be captured.
# container_state_include = []
# container_state_exclude = []
## Objects to include for disk usage query
## Allowed values are "container", "image", "volume"
## When empty disk usage is excluded
storage_objects = []
## Timeout for docker list, info, and stats commands
timeout = "5s"
## Whether to report for each container per-device blkio (8:0, 8:1...),
## network (eth0, eth1, ...) and cpu (cpu0, cpu1, ...) stats or not.
## Usage of this setting is discouraged since it will be deprecated in favor of 'perdevice_include'.
## Default value is 'true' for backwards compatibility, please set it to 'false' so that 'perdevice_include' setting
## is honored.
perdevice = true
## Specifies for which classes a per-device metric should be issued
## Possible values are 'cpu' (cpu0, cpu1, ...), 'blkio' (8:0, 8:1, ...) and 'network' (eth0, eth1, ...)
## Please note that this setting has no effect if 'perdevice' is set to 'true'
# perdevice_include = ["cpu"]
## Whether to report for each container total blkio and network stats or not.
## Usage of this setting is discouraged since it will be deprecated in favor of 'total_include'.
## Default value is 'false' for backwards compatibility, please set it to 'true' so that 'total_include' setting
## is honored.
total = false
## Specifies for which classes a total metric should be issued. Total is an aggregated of the 'perdevice' values.
## Possible values are 'cpu', 'blkio' and 'network'
## Total 'cpu' is reported directly by Docker daemon, and 'network' and 'blkio' totals are aggregated by this plugin.
## Please note that this setting has no effect if 'total' is set to 'false'
# total_include = ["cpu", "blkio", "network"]
## docker labels to include and exclude as tags. Globs accepted.
## Note that an empty array for both will include all labels as tags
docker_label_include = []
docker_label_exclude = []
## Which environment variables should we use as a tag
tag_env = ["JAVA_HOME", "HEAP_SIZE"]
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Parquet
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
# directory = "."
## Files are rotated after the time interval specified. When set to 0 no time
## based rotation is performed.
# rotation_interval = "0h"
## Timestamp field name
## Field name to use to store the timestamp. If set to an empty string, then
## the timestamp is omitted.
# timestamp_field_name = "timestamp"
Input and output integration examples
Docker
-
Monitoring the Performance of Containerized Applications: Use the Docker input plugin in order to track the CPU, memory, disk I/O, and network activity of applications running in Docker containers. By collecting these metrics, DevOps teams can proactively manage resource allocation, troubleshoot performance bottlenecks, and ensure optimal application performance across different environments.
-
Integrating with Kubernetes: Leverage this plugin to gather metrics from Docker containers orchestrated by Kubernetes. By filtering out unnecessary Kubernetes labels and focusing on key metrics, teams can streamline their monitoring solutions and create dashboards that provide insights into the overall health of microservices running within the Kubernetes cluster.
-
Capacity Planning and Resource Optimization: Use the metrics collected by the Docker input plugin to perform capacity planning for Docker deployments. Analyzing usage patterns helps identify underutilized resources and over-provisioned containers, guiding decisions on scaling up or down based on actual usage trends.
-
Automated Alerting for Container Anomalies: Set up alerting rules based on the metrics collected through the Docker plugin to notify teams of unusual spikes in resource usage or service disruptions. This proactive monitoring approach helps maintain service reliability and optimize the performance of containerized applications.
Parquet
-
Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.
-
Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.
-
Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.
-
Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration