Azure Event Hubs and Clarify Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Azure Event Hubs Input Plugin allows Telegraf to consume data from Azure Event Hubs and Azure IoT Hub, enabling efficient data processing and monitoring of event streams from these cloud services.
The Clarify plugin allows users to publish Telegraf metrics directly to Clarify, enabling enhanced analysis and monitoring capabilities.
Integration details
Azure Event Hubs
This plugin serves as a consumer for Azure Event Hubs and Azure IoT Hub, allowing users to ingest data streams from these platforms efficiently. Azure Event Hubs is a highly scalable data streaming platform and event ingestion service capable of receiving and processing millions of events per second, while Azure IoT Hub enables secure device-to-cloud and cloud-to-device communication in IoT applications. The Event Hub Input Plugin interacts seamlessly with these services, providing reliable message consumption and stream processing capabilities. Key features include dynamic management of consumer groups, message tracking to prevent data loss, and customizable settings for prefetch counts, user agents, and metadata handling. This plugin is designed to support a range of use cases, including real-time telemetry data collection, IoT data processing, and integration with various data analysis and monitoring tools within the broader Azure ecosystem.
Clarify
This plugin facilitates the writing of Telegraf metrics to Clarify, a platform for managing and analyzing time series data. By transforming metrics into Clarify signals, this output plugin enables seamless integration of collected telemetry data into the Clarify ecosystem. Users must obtain valid credentials, either through a credentials file or basic authentication, to configure the plugin. The configuration also provides options for fine-tuning how metrics are mapped to signals in Clarify, including the ability to specify unique identifiers using tags. Given that Clarify supports only floating point values, the plugin ensures that any unsupported types are effectively filtered out during the publishing process. This comprehensive connectivity aligns with use cases in monitoring, data analysis, and operational insights.
Configuration
Azure Event Hubs
[[inputs.eventhub_consumer]]
## The default behavior is to create a new Event Hub client from environment variables.
## This requires one of the following sets of environment variables to be set:
##
## 1) Expected Environment Variables:
## - "EVENTHUB_CONNECTION_STRING"
##
## 2) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "EVENTHUB_KEY_NAME"
## - "EVENTHUB_KEY_VALUE"
## 3) Expected Environment Variables:
## - "EVENTHUB_NAMESPACE"
## - "EVENTHUB_NAME"
## - "AZURE_TENANT_ID"
## - "AZURE_CLIENT_ID"
## - "AZURE_CLIENT_SECRET"
## Uncommenting the option below will create an Event Hub client based solely on the connection string.
## This can either be the associated environment variable or hard coded directly.
## If this option is uncommented, environment variables will be ignored.
## Connection string should contain EventHubName (EntityPath)
# connection_string = ""
## Set persistence directory to a valid folder to use a file persister instead of an in-memory persister
# persistence_dir = ""
## Change the default consumer group
# consumer_group = ""
## By default the event hub receives all messages present on the broker, alternative modes can be set below.
## The timestamp should be in https://github.com/toml-lang/toml#offset-date-time format (RFC 3339).
## The 3 options below only apply if no valid persister is read from memory or file (e.g. first run).
# from_timestamp =
# latest = true
## Set a custom prefetch count for the receiver(s)
# prefetch_count = 1000
## Add an epoch to the receiver(s)
# epoch = 0
## Change to set a custom user agent, "telegraf" is used by default
# user_agent = "telegraf"
## To consume from a specific partition, set the partition_ids option.
## An empty array will result in receiving from all partitions.
# partition_ids = ["0","1"]
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Set either option below to true to use a system property as timestamp.
## You have the choice between EnqueuedTime and IoTHubEnqueuedTime.
## It is recommended to use this setting when the data itself has no timestamp.
# enqueued_time_as_ts = true
# iot_hub_enqueued_time_as_ts = true
## Tags or fields to create from keys present in the application property bag.
## These could for example be set by message enrichments in Azure IoT Hub.
# application_property_tags = []
# application_property_fields = []
## Tag or field name to use for metadata
## By default all metadata is disabled
# sequence_number_field = "SequenceNumber"
# enqueued_time_field = "EnqueuedTime"
# offset_field = "Offset"
# partition_id_tag = "PartitionID"
# partition_key_tag = "PartitionKey"
# iot_hub_device_connection_id_tag = "IoTHubDeviceConnectionID"
# iot_hub_auth_generation_id_tag = "IoTHubAuthGenerationID"
# iot_hub_connection_auth_method_tag = "IoTHubConnectionAuthMethod"
# iot_hub_connection_module_id_tag = "IoTHubConnectionModuleID"
# iot_hub_enqueued_time_field = "IoTHubEnqueuedTime"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Clarify
[[outputs.clarify]]
## Credentials File (Oauth 2.0 from Clarify integration)
credentials_file = "/path/to/clarify/credentials.json"
## Clarify username password (Basic Auth from Clarify integration)
username = "i-am-bob"
password = "secret-password"
## Timeout for Clarify operations
# timeout = "20s"
## Optional tags to be included when generating the unique ID for a signal in Clarify
# id_tags = []
# clarify_id_tag = 'clarify_input_id'
Input and output integration examples
Azure Event Hubs
-
Real-Time IoT Device Monitoring: Use the Azure Event Hubs Plugin to monitor telemetry data from IoT devices like sensors and actuators. By streaming device data into monitoring dashboards, organizations can gain insights into system performances, track usage patterns, and quickly respond to irregularities. This setup allows for proactive management of devices, improving operational efficiency and reducing downtime.
-
Event-Driven Data Processing Workflows: Leverage this plugin to trigger data processing workflows in response to events received from Azure Event Hubs. For instance, when a new event arrives, it can initiate data transformation, aggregation, or storage processes, allowing businesses to automate their workflows more effectively. This integration enhances responsiveness and streamlines operations across systems.
-
Integration with Analytics Platforms: Implement the plugin to funnel event data into analytics platforms like Azure Synapse or Power BI. By integrating real-time streaming data into analytics tools, organizations can perform comprehensive data analysis, drive business intelligence efforts, and create interactive visualizations that inform decision-making.
-
Cross-Platform Data Sync: Utilize the Azure Event Hubs Plugin to synchronize data streams across diverse systems or platforms. By consuming data from Azure Event Hubs and forwarding it to other systems like databases or cloud storage, organizations can maintain consistent and up-to-date information across their entire architecture, enabling cohesive data strategies.
Clarify
-
Automated Data Monitoring: By integrating the Clarify plugin with sensor data collection, organizations can automate the monitoring of environmental conditions, such as temperature and humidity. The plugin processes metrics in real-time, sending updates to Clarify where they can be analyzed for trends, alerts, and historical tracking. This use case makes it easier to maintain optimal conditions in data centers or production environments, reducing the risk of equipment failures.
-
Performance Metrics Analysis: Companies can leverage this plugin to send application performance metrics to Clarify. By transmitting key indicators such as response times and error rates, developers and operations teams can utilize Clarify’s capabilities to visualize and analyze application performance over time. This insight can drive improvements in user experience and help identify areas in need of optimization.
-
Sensor Data Aggregation: Utilizing the plugin to push data from multiple sensors to Clarify allows for a comprehensive view of physical environments. This aggregation is particularly beneficial in sectors such as agriculture, where metrics from various sensors can be correlated to decision-making about resource allocations, pest control, and crop management. The plugin ensures the data is accurately mapped and transformed for effective analysis.
-
Real-Time Alerts and Notifications: Implement the Clarify plugin to trigger real-time alerts based on predefined thresholds within the metrics being sent. For instance, if temperature readings exceed certain levels, alerts can be generated and sent to operational staff. This proactive approach allows for immediate responses to potential issues, enhancing operational reliability and safety.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration