gNMI and Zabbix Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider gNMI and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The gNMI (gRPC Network Management Interface) Input Plugin collects telemetry data from network devices using the gNMI Subscribe method. It supports TLS for secure authentication and data transmission.

This plugin sends metrics to Zabbix via traps, allowing for efficient monitoring of systems and applications. It supports automated configuration and data sending based on dynamic metrics collected by Telegraf.

Integration details

gNMI

This input plugin is vendor-agnostic and can be used with any platform that supports the gNMI specification. It consumes telemetry data based on the gNMI Subscribe method, allowing for real-time monitoring of network devices.

Zabbix

The Telegraf Zabbix plugin is designed to send metrics to Zabbix, an open-source monitoring solution, using the trap protocol. It supports various versions from 3.0 to 6.0, ensuring compatibility with recent updates. The plugin facilitates easy integration with the Zabbix ecosystem, allowing users to send collected metrics and monitor system performance seamlessly. Key functionalities include the ability to define the address and port of the Zabbix server, options for prefixing keys, determining the type of data sent (active vs. trapper), and features for low-level discovery (LLD) enabling dynamic item creation based on the metrics observed. Configuration options also allow for autoregistration and resending intervals for LLD data, ensuring that the metrics are up-to-date and relevant. Additionally, the trap format used for sending metrics is structured to facilitate efficient data transfer and processing in Zabbix.

Configuration

gNMI


[[inputs.gnmi]]
  ## Address and port of the gNMI GRPC server
  addresses = ["10.49.234.114:57777"]

  ## define credentials
  username = "cisco"
  password = "cisco"

  ## gNMI encoding requested (one of: "proto", "json", "json_ietf", "bytes")
  # encoding = "proto"

  ## redial in case of failures after
  # redial = "10s"

  ## gRPC Keepalive settings
  ## See https://pkg.go.dev/google.golang.org/grpc/keepalive
  ## The client will ping the server to see if the transport is still alive if it has
  ## not see any activity for the given time.
  ## If not set, none of the keep-alive setting (including those below) will be applied.
  ## If set and set below 10 seconds, the gRPC library will apply a minimum value of 10s will be used instead.
  # keepalive_time = ""

  ## Timeout for seeing any activity after the keep-alive probe was
  ## sent. If no activity is seen the connection is closed.
  # keepalive_timeout = ""

  ## gRPC Maximum Message Size
  # max_msg_size = "4MB"

  ## Enable to get the canonical path as field-name
  # canonical_field_names = false

  ## Remove leading slashes and dots in field-name
  # trim_field_names = false

  ## Guess the path-tag if an update does not contain a prefix-path
  ## Supported values are
  ##   none         -- do not add a 'path' tag
  ##   common path  -- use the common path elements of all fields in an update
  ##   subscription -- use the subscription path
  # path_guessing_strategy = "none"

  ## Prefix tags from path keys with the path element
  # prefix_tag_key_with_path = false

  ## Optional client-side TLS to authenticate the device
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## gNMI subscription prefix (optional, can usually be left empty)
  ## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
  # origin = ""
  # prefix = ""
  # target = ""

  ## Vendor specific options
  ## This defines what vendor specific options to load.
  ## * Juniper Header Extension (juniper_header): some sensors are directly managed by
  ##   Linecard, which adds the Juniper GNMI Header Extension. Enabling this
  ##   allows the decoding of the Extension header if present. Currently this knob
  ##   adds component, component_id & sub_component_id as additional tags
  # vendor_specific = []

  ## YANG model paths for decoding IETF JSON payloads
  ## Model files are loaded recursively from the given directories. Disabled if
  ## no models are specified.
  # yang_model_paths = []

  ## Define additional aliases to map encoding paths to measurement names
  # [inputs.gnmi.aliases]
  #   ifcounters = "openconfig:/interfaces/interface/state/counters"

  [[inputs.gnmi.subscription]]
    ## Name of the measurement that will be emitted
    name = "ifcounters"

    ## Origin and path of the subscription
    ## See: https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md#222-paths
    ##
    ## origin usually refers to a (YANG) data model implemented by the device
    ## and path to a specific substructure inside it that should be subscribed
    ## to (similar to an XPath). YANG models can be found e.g. here:
    ## https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
    origin = "openconfig-interfaces"
    path = "/interfaces/interface/state/counters"

    ## Subscription mode ("target_defined", "sample", "on_change") and interval
    subscription_mode = "sample"
    sample_interval = "10s"

    ## Suppress redundant transmissions when measured values are unchanged
    # suppress_redundant = false

    ## If suppression is enabled, send updates at least every X seconds anyway
    # heartbeat_interval = "60s"

Zabbix

[[outputs.zabbix]]
  ## Address and (optional) port of the Zabbix server
  address = "zabbix.example.com:10051"

  ## Send metrics as type "Zabbix agent (active)"
  # agent_active = false

  ## Add prefix to all keys sent to Zabbix.
  # key_prefix = "telegraf."

  ## Name of the tag that contains the host name. Used to set the host in Zabbix.
  ## If the tag is not found, use the hostname of the system running Telegraf.
  # host_tag = "host"

  ## Skip measurement prefix to all keys sent to Zabbix.
  # skip_measurement_prefix = false

  ## This field will be sent as HostMetadata to Zabbix Server to autoregister the host.
  ## To enable this feature, this option must be set to a value other than "".
  # autoregister = ""

  ## Interval to resend auto-registration data to Zabbix.
  ## Only applies if autoregister feature is enabled.
  ## This value is a lower limit, the actual resend should be triggered by the next flush interval.
  # autoregister_resend_interval = "30m"

  ## Interval to send LLD data to Zabbix.
  ## This value is a lower limit, the actual resend should be triggered by the next flush interval.
  # lld_send_interval = "10m"

  ## Interval to delete stored LLD known data and start capturing it again.
  ## This value is a lower limit, the actual resend should be triggered by the next flush interval.
  # lld_clear_interval = "1h"

Input and output integration examples

gNMI

  1. Monitoring Cisco Devices: Use the gNMI plugin to collect telemetry data from Cisco IOS XR, NX-OS, or IOS XE devices for performance monitoring.

  2. Real-time Network Insights: With the gNMI plugin, network administrators can gain insights into real-time metrics such as interface statistics and CPU usage.

  3. Secure Data Collection: Configure the gNMI plugin with TLS settings to ensure secure communication while collecting sensitive telemetry data from devices.

  4. Flexible Data Handling: Use the subscription options to customize which telemetry data you want to collect based on specific needs or requirements.

  5. Error Handling: The plugin includes troubleshooting options to handle common issues like missing metric names or TLS handshake failures.

Zabbix

  1. Dynamic Monitoring of Containerized Applications: Integration of the Zabbix plugin can be leveraged to monitor Docker containers dynamically. As containers are created and removed, the plugin can automatically update Zabbix with the appropriate metrics, ensuring that monitoring stays current without manual configuration. This enhances visibility into resource usage and performance metrics for microservices orchestrated with Kubernetes or Docker Swarm.

  2. Real-Time Performance Monitoring with Auto-registration: By enabling the autoregister feature, the plugin can automatically register hosts in Zabbix based on the metrics received. This scenario provides a streamlined approach to add new hosts to monitoring without manual setup, which is particularly useful in environments where hosts may frequently spin up and down, such as serverless architectures or cloud-based deployments.

  3. Leveraging Low-level Discovery for Flexible Metric Capture: Using low-level discovery, this plugin allows Zabbix to adaptively create items for metrics that are not predefined. In a scenario involving multiple network devices reporting different performance metrics, the plugin can dynamically inform Zabbix about new metrics as they appear, thus ensuring comprehensive monitoring capabilities that evolve with the monitored systems.

  4. Centralized Monitoring of Distributed Systems: The Zabbix plugin can be utilized in a centralized monitoring setup for distributed systems where multiple Telegraf instances are running across different geographical locations. By sending all metrics to a central Zabbix server, organizations can achieve a holistic view of their infrastructure’s performance and make informed operational decisions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration