Google Cloud PubSub and M3DB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin ingests metrics from Google Cloud PubSub, allowing for real-time data processing and integration into monitoring setups.
This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.
Integration details
Google Cloud PubSub
The Google Cloud PubSub input plugin is designed to ingest metrics from Google Cloud PubSub, a messaging service that facilitates real-time communication between different systems. It allows users to create and process metrics by pulling messages from a specified subscription in a Google Cloud Project. One of the critical features of this plugin is its ability to operate as a service input, actively listening for incoming messages rather than merely polling for metrics at set intervals. Through various configuration options, users can customize the behavior of message ingestion, such as handling credentials, managing message sizes, and tuning the acknowledgment settings to ensure that messages are only acknowledged after successful processing. By leveraging the strengths of Google PubSub, this plugin integrates seamlessly with cloud-native architectures, enabling users to build robust and scalable applications that can react to events in real-time.
M3DB
This configuration uses Telegraf’s HTTP output plugin with prometheusremotewrite
format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.
Configuration
Google Cloud PubSub
[[inputs.cloud_pubsub]]
project = "my-project"
subscription = "my-subscription"
data_format = "influx"
# credentials_file = "path/to/my/creds.json"
# retry_delay_seconds = 5
# max_message_len = 1000000
# max_undelivered_messages = 1000
# max_extension = 0
# max_outstanding_messages = 0
# max_outstanding_bytes = 0
# max_receiver_go_routines = 0
# base64_data = false
# content_encoding = "identity"
# max_decompression_size = "500MB"
M3DB
# Configuration for sending metrics to M3
[outputs.http]
## URL is the address to send metrics to
url = "https://M3_HOST:M3_PORT/api/v1/prom/remote/write"
## HTTP Basic Auth credentials
username = "admin"
password = "password"
## Data format to output.
data_format = "prometheusremotewrite"
## Outgoing HTTP headers
[outputs.http.headers]
Content-Type = "application/x-protobuf"
Content-Encoding = "snappy"
X-Prometheus-Remote-Write-Version = "0.1.0"
Input and output integration examples
Google Cloud PubSub
-
Real-Time Analytics for IoT Devices: Utilize the Google Cloud PubSub plugin to aggregate metrics from IoT devices scattered across various locations. By streaming data from devices to Google PubSub and using this plugin to ingest metrics, organizations can create a centralized dashboard for real-time monitoring and alerting. This setup allows for immediate insights into device performance, facilitating proactive maintenance and operational efficiency.
-
Dynamic Log Processing and Monitoring: Ingest logs from numerous sources via Google Cloud PubSub into a Telegraf pipeline, utilizing the plugin to parse and analyze log messages. This can help teams quickly identify anomalies or patterns in logs and streamline the process of troubleshooting issues across distributed systems. By consolidating log data, organizations can enhance their observability and response capabilities.
-
Event-Driven Workflow Integrations: Use the Google Cloud PubSub plugin to connect various cloud functions or services. Each time a new message is pushed to a subscription, actions can be triggered in other parts of the cloud architecture, such as starting data processing jobs, notifications, or even updates to reports. This event-driven approach allows for a more reactive system architecture that can adapt to changing business needs.
M3DB
-
Large-Scale Cloud Infrastructure Monitoring: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.
-
Legacy System Metrics Ingestion: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.
-
Centralized App Telemetry Aggregation: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g.,
exec
,http
,jolokia
) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources. -
Hybrid Cloud Observability: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration