Google Cloud Storage and Databricks Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Google Cloud Storage and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Google Cloud Storage plugin collects metrics from specified Google Cloud Storage buckets, providing insight into storage usage and performance.

Use Telegraf’s HTTP output plugin to push metrics straight into a Databricks Lakehouse by calling the SQL Statement Execution API with a JSON-wrapped INSERT or volume PUT command.

Integration details

Google Cloud Storage

The Google Cloud Storage Telegraf plugin enables the collection of metrics from specified Google Cloud Storage buckets. As organizations increasingly rely on cloud storage solutions for their data management, the ability to monitor the performance and utilization of these resources becomes essential. This plugin is particularly useful for tracking how storage is used, understanding data patterns, and ensuring operational efficiency. By integrating with Google Cloud Storage APIs, it allows users to gather insights from their cloud environments, feeding metrics directly into monitoring systems for further analysis. The plugin supports various configuration options, enabling users to customize the data collection process based on their specific needs.

Databricks

This configuration turns Telegraf into a lightweight ingestion agent for the Databricks Lakehouse. It leverages the Databricks SQL Statement Execution API 2.0, which accepts authenticated POST requests containing a JSON payload with a statement field. Each Telegraf flush dynamically renders a SQL INSERT (or, for file-based workflows, a PUT ... INTO /Volumes/... command) that lands the metrics into a Unity Catalog table or volume governed by Lakehouse security. Under the hood Databricks stores successful inserts as Delta Lake transactions, enabling ACID guarantees, time-travel, and scalable analytics. Operators can point the warehouse_id at any serverless or classic SQL warehouse, and all authentication is handled with a PAT or service-principal token—no agents or JDBC drivers required. Because Telegraf’s HTTP output supports custom headers, batching, TLS, and proxy settings, the same pattern scales from edge IoT gateways to container sidecars, consolidating infrastructure telemetry, application logs, or business KPIs directly into the Lakehouse for BI, ML, and Lakehouse Monitoring. Unity Catalog volumes provide a governed staging layer when file uploads and COPY INTO are preferred, and the approach aligns with Databricks’ recommended ingestion practices for partners and ISVs.

Configuration

Google Cloud Storage

[[inputs.google_cloud_storage]]
  bucket = "my-bucket"
  # key_prefix = "my-bucket"
  offset_key = "offset_key"
  objects_per_iteration = 10
  data_format = "influx"
  # credentials_file = "path/to/my/creds.json"

Databricks

[[outputs.http]]
  ## Databricks SQL Statement Execution API endpoint
  url = "https://{{ env "DATABRICKS_HOST" }}/api/2.0/sql/statements"

  ## Use POST to submit each Telegraf batch as a SQL request
  method = "POST"

  ## Personal-access token (PAT) for workspace or service principal
  headers = { Authorization = "Bearer {{ env "DATABRICKS_TOKEN" }}" }

  ## Send JSON that wraps the metrics batch in a SQL INSERT (or PUT into a Volume)
  content_type = "application/json"

  ## Serialize metrics as JSON so they can be embedded in the SQL statement
  data_format = "json"
  json_timestamp_units = "1ms"

  ## Build the request body.  Telegraf replaces the template variables at runtime.
  ## Example inserts a row per metric into a Unity-Catalog table.
  body_template = """
  {
    \"statement\": \"INSERT INTO ${TARGET_TABLE} VALUES {{range .Metrics}}(from_unixtime({{.timestamp}}/1000), {{.fields.usage}}, '{{.tags.host}}'){{end}}\",
    \"warehouse_id\": \"${WAREHOUSE_ID}\"
  }
  """

  ## Optional: add batching limits or TLS settings
  # batch_size = 500
  # timeout     = "10s"

Input and output integration examples

Google Cloud Storage

  1. Automated Backup Monitoring: Utilize the Google Cloud Storage plugin to regularly monitor the status of backup files stored in a Cloud Storage bucket. By configuring the plugin to track file metrics, organizations can automate alerts if backup sizes deviate from expected patterns, ensuring that data protection processes are functioning properly and any anomalies are promptly addressed.

  2. Cost Optimization Insights: Integrate this plugin into a cost management tool to analyze the usage patterns of Cloud Storage. By collecting metrics on file sizes and access frequencies, teams can optimize their storage solutions and make informed decisions about data retention policies, potentially reducing unnecessary storage costs and improving resource allocation.

  3. Compliance and Auditing: Use the plugin to generate metrics that aid in compliance verification for data stored in Google Cloud Storage. By providing detailed insights into data access and storage usage, organizations can ensure adherence to regulatory requirements, helping in audits and aligning with best practices for data governance.

  4. Performance Benchmarking: Deploy the plugin to benchmark the performance of data retrieval and storage operations in Google Cloud Storage. By analyzing metrics over time, teams can identify performance bottlenecks or inefficiencies, allowing them to optimize their applications and infrastructure that depend on cloud storage services.

Databricks

  1. Edge-to-Lakehouse Telemetry Pipe: Deploy Telegraf on factory PLCs to sample vibration metrics and post them every second to a serverless SQL warehouse. Delta tables power PowerBI dashboards that alert engineers when thresholds drift.
  2. Blue-Green CI/CD Rollout Metrics: Attach a Telegraf sidecar to each Kubernetes canary pod; it inserts container stats into a Unity Catalog table tagged by deployment_id, letting Databricks SQL compare error-rate percentiles and auto-rollback underperforming versions.
  3. SaaS Usage Metering: Insert per-tenant API-call counters via the HTTP plugin; a nightly Lakehouse query aggregates usage into invoices, eliminating custom metering micro-services.
  4. Security Forensics Lake: Upload JSON batches of Suricata IDS events to a Unity Catalog volume using PUT commands, then run COPY INTO for near-real-time enrichment with Delta Live Tables, producing a searchable threat-intel lake that joins network logs with user session data.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration