Intel PowerStat and DuckDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
Monitor power statistics on Intel-based platforms and is compatible with Linux-based operating systems. It helps in understanding and managing power efficiency and CPU performance.
This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.
Integration details
Intel PowerStat
The Intel PowerStat plugin is designed to monitor power statistics specifically on Intel-based platforms running a Linux operating system. It offers visibility into critical metrics such as CPU temperature, utilization, and power consumption, making it essential for power saving initiatives and workload migration strategies. By leveraging telemetry frameworks, this plugin enables users to gain insights into platform-level metrics that help with monitoring and analytics systems in the context of Management and Orchestration (MANO). It facilitates the ability to make informed decisions and perform corrective actions based on the state of the platform, ultimately contributing to better system efficiency and reliability.
DuckDB
Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.
Configuration
Intel PowerStat
[[inputs.intel_powerstat]]
# package_metrics = ["current_power_consumption", "current_dram_power_consumption", "thermal_design_power"]
# cpu_metrics = []
# included_cpus = []
# excluded_cpus = []
# event_definitions = ""
# msr_read_timeout = "0ms"
DuckDB
[[outputs.sql]]
## Use the SQLite driver to connect to DuckDB via Go's database/sql
driver = "sqlite3"
## DSN should point to the DuckDB database file
dsn = "file:/var/lib/telegraf/metrics.duckdb"
## SQL INSERT statement with placeholders for metrics
table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Optional: manage connection pooling
# max_open_connections = 1
# max_idle_connections = 1
# conn_max_lifetime = "0s"
## DuckDB does not require TLS or authentication by default
Input and output integration examples
Intel PowerStat
-
Optimizing Data Center Energy Usage: Monitor power consumption metrics across all CPUs in a data center. By capturing real-time data, administrators can identify which servers consume the most power and implement shutdowns or load balancing strategies during low demand periods, effectively reducing operational costs.
-
Dynamic Workload Migration Based on Power Efficiency: Integrate this plugin with a cloud orchestration tool to enable dynamic migration of workloads based on power usage metrics. If a particular server is recorded as consuming excessive power without corresponding output, the orchestrator can seamlessly migrate workloads to more efficient nodes, ensuring optimal resource utilization and lower energy expenses.
-
Monitoring and Alerting Mechanism for Overheating CPUs: Implement an alerting system using the CPU temperature metrics captured by Intel PowerStat. Setting thresholds for temperature can alert system administrators when a CPU is prone to overheating, allowing proactive measures to be taken before hardware damage occurs, ultimately extending the life of the components.
-
Performance Benchmarking for CPU-intensive Applications: Use the metrics provided to benchmark the performance of CPU-intensive applications. By analyzing the
cpu_frequency
,cpu_temperature
, and power metrics under load, developers can optimize application performance and make informed decisions regarding scaling and resource allocation.
DuckDB
-
Embedded Metric Warehousing for Notebooks: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.
-
Batch Time-Series Processing on the Edge: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.
-
Exploratory Querying of Historical Metrics: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.
-
Self-Contained Metric Snapshots: Use DuckDB as a portable metrics archive by shipping
.duckdb
files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration