IPMI Sensor and Dynatrace Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider IPMI and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The IPMI Sensor Plugin facilitates the collection of server health metrics directly from hardware via the IPMI protocol, querying sensor data from either local or remote systems.

The Dynatrace plugin allows users to send metrics collected by Telegraf directly to Dynatrace for monitoring and analysis. This integration enhances the observability of systems and applications, providing valuable insights into performance and operational health.

Integration details

IPMI Sensor

The IPMI Sensor plugin is designed to gather bare metal metrics via the command line utility ipmitool, which interfaces with the Intelligent Platform Management Interface (IPMI). This protocol provides management and monitoring capabilities for hardware components in server systems, allowing for the retrieval of critical system health metrics such as temperature, fan speeds, and power supply status from both local and remote servers. When configured without specified servers, the plugin defaults to querying the local machine’s sensor statistics using the ipmitool sdr command. In scenarios covering remote hosts, authentication is supported through username and password using the command format ipmitool -I lan -H SERVER -U USERID -P PASSW0RD sdr. This flexibility allows users to monitor systems effectively across various environments. The plugin also supports multiple sensor types, including chassis power status and DCMI power readings, catering to administrators needing real-time insight into server operations.

Dynatrace

The Dynatrace plugin for Telegraf facilitates the transmission of metrics to the Dynatrace platform via the Dynatrace Metrics API V2. This plugin can function in two modes: it can run alongside the Dynatrace OneAgent, which automates authentication, or it can operate in a standalone configuration that requires manual specification of the URL and API token for environments without a OneAgent. The plugin primarily reports metrics as gauges unless explicitly configured to treat certain metrics as delta counters using the available config options. This feature empowers users to customize the behavior of metrics sent to Dynatrace, harnessing the robust capabilities of the platform for comprehensive performance monitoring and observability. It’s crucial for users to ensure compliance with version requirements for both Dynatrace and Telegraf, thereby optimizing compatibility and performance when integrating with the Dynatrace ecosystem.

Configuration

IPMI Sensor

[[inputs.ipmi_sensor]]
  ## Specify the path to the ipmitool executable
  # path = "/usr/bin/ipmitool"

  ## Use sudo
  ## Setting 'use_sudo' to true will make use of sudo to run ipmitool.
  ## Sudo must be configured to allow the telegraf user to run ipmitool
  ## without a password.
  # use_sudo = false

  ## Servers
  ## Specify one or more servers via a url. If no servers are specified, local
  ## machine sensor stats will be queried. Uses the format:
  ##  [username[:password]@][protocol[(address)]]
  ##  e.g. root:passwd@lan(127.0.0.1)
  # servers = ["USERID:PASSW0RD@lan(192.168.1.1)"]

  ## Session privilege level
  ## Choose from: CALLBACK, USER, OPERATOR, ADMINISTRATOR
  # privilege = "ADMINISTRATOR"

  ## Timeout
  ## Timeout for the ipmitool command to complete.
  # timeout = "20s"

  ## Metric schema version
  ## See the plugin readme for more information on schema versioning.
  # metric_version = 1

  ## Sensors to collect
  ## Choose from:
  ##   * sdr: default, collects sensor data records
  ##   * chassis_power_status: collects the power status of the chassis
  ##   * dcmi_power_reading: collects the power readings from the Data Center Management Interface
  # sensors = ["sdr"]

  ## Hex key
  ## Optionally provide the hex key for the IMPI connection.
  # hex_key = ""

  ## Cache
  ## If ipmitool should use a cache
  ## Using a cache can speed up collection times depending on your device.
  # use_cache = false

  ## Path to the ipmitools cache file (defaults to OS temp dir)
  ## The provided path must exist and must be writable
  # cache_path = ""

Dynatrace

[[outputs.dynatrace]]
  ## For usage with the Dynatrace OneAgent you can omit any configuration,
  ## the only requirement is that the OneAgent is running on the same host.
  ## Only setup environment url and token if you want to monitor a Host without the OneAgent present.
  ##
  ## Your Dynatrace environment URL.
  ## For Dynatrace OneAgent you can leave this empty or set it to "http://127.0.0.1:14499/metrics/ingest" (default)
  ## For Dynatrace SaaS environments the URL scheme is "https://{your-environment-id}.live.dynatrace.com/api/v2/metrics/ingest"
  ## For Dynatrace Managed environments the URL scheme is "https://{your-domain}/e/{your-environment-id}/api/v2/metrics/ingest"
  url = ""

  ## Your Dynatrace API token.
  ## Create an API token within your Dynatrace environment, by navigating to Settings > Integration > Dynatrace API
  ## The API token needs data ingest scope permission. When using OneAgent, no API token is required.
  api_token = ""

  ## Optional prefix for metric names (e.g.: "telegraf")
  prefix = "telegraf"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Optional flag for ignoring tls certificate check
  # insecure_skip_verify = false

  ## Connection timeout, defaults to "5s" if not set.
  timeout = "5s"

  ## If you want metrics to be treated and reported as delta counters, add the metric names here
  additional_counters = [ ]

  ## In addition or as an alternative to additional_counters, if you want metrics to be treated and
  ## reported as delta counters using regular expression pattern matching
  additional_counters_patterns = [ ]

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Optional dimensions to be added to every metric
  # [outputs.dynatrace.default_dimensions]
  # default_key = "default value"

Input and output integration examples

IPMI Sensor

  1. Centralized Monitoring Dashboard: Utilize the IPMI Sensor plugin to gather metrics from multiple servers and compile them into a centralized monitoring dashboard. This enables real-time visibility into server health across data centers. Administrators can track metrics like temperature and power usage, helping them make data-driven decisions about resource allocation, potential failures, and maintenance schedules.

  2. Automated Power Alerts: Incorporate the plugin into an alerting system that monitors chassis power status and triggers alerts when anomalies are detected. For instance, if the power status indicates a failure or if watt values exceed expected thresholds, automated notifications can be sent to operations teams, ensuring prompt attention to hardware issues.

  3. Energy Consumption Analysis: Leverage the DCMI power readings collected via the plugin to analyze energy consumption patterns of hardware over time. By integrating these readings with analytics platforms, organizations can identify opportunities to reduce power usage, optimize efficiency, and potentially decrease operational costs in large server farms or cloud infrastructures.

  4. Health Check Automation: Schedule regular health checks by using the IPMI Sensor Plugin to collect data from a fleet of servers. This data can be logged and compared against historical performance metrics to identify trends, outliers, or signs of impending hardware failure, allowing IT teams to take proactive measures and reduce downtime.

Dynatrace

  1. Cloud Infrastructure Monitoring: Utilize the Dynatrace plugin to monitor a cloud infrastructure setup, feeding real-time metrics from Telegraf into Dynatrace. This integration provides a holistic view of resource utilization, application performance, and system health, enabling proactive responses to performance issues across various cloud environments.

  2. Custom Application Performance Metrics: Implement custom application-specific metrics by configuring the Dynatrace output plugin to send tailored metrics from Telegraf. By leveraging additional counters and dimension options, development teams can gain insights that are precisely aligned with their application’s operational requirements, allowing for targeted optimization efforts.

  3. Multi-Environment Metrics Management: For organizations running multiple Dynatrace environments (e.g., production, staging, and development), use this plugin to manage metrics for all environments from a single Telegraf instance. With proper configuration of endpoints and API tokens, teams can maintain consistent monitoring practices throughout the SDLC, ensuring that performance anomalies are detected early in the development process.

  4. Automated Alerting Based on Metrics Changes: Integrate the Dynatrace output plugin with an alerting mechanism that triggers notifications when specific metrics exceed defined thresholds. This scenario involves configuring additional counters to monitor crucial application performance indicators, enabling swift remediation actions to maintain service availability and user satisfaction.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration