IPMI Sensor and Mimir Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The IPMI Sensor Plugin facilitates the collection of server health metrics directly from hardware via the IPMI protocol, querying sensor data from either local or remote systems.
This plugin sends Telegraf metrics directly to Grafana’s Mimir database using HTTP, providing scalable and efficient long-term storage and analysis for Prometheus-compatible metrics.
Integration details
IPMI Sensor
The IPMI Sensor plugin is designed to gather bare metal metrics via the command line utility ipmitool
, which interfaces with the Intelligent Platform Management Interface (IPMI). This protocol provides management and monitoring capabilities for hardware components in server systems, allowing for the retrieval of critical system health metrics such as temperature, fan speeds, and power supply status from both local and remote servers. When configured without specified servers, the plugin defaults to querying the local machine’s sensor statistics using the ipmitool sdr
command. In scenarios covering remote hosts, authentication is supported through username and password using the command format ipmitool -I lan -H SERVER -U USERID -P PASSW0RD sdr
. This flexibility allows users to monitor systems effectively across various environments. The plugin also supports multiple sensor types, including chassis power status and DCMI power readings, catering to administrators needing real-time insight into server operations.
Mimir
Grafana Mimir supports the Prometheus Remote Write protocol, enabling Telegraf collected metrics to be efficiently ingested into Mimir clusters for large-scale, long-term storage. This integration leverages Prometheus’s well-established standards, allowing users to combine Telegraf’s extensive data collection capabilities with Mimir’s advanced features, such as query federation, multi-tenancy, high availability, and cost-efficient storage. Grafana Mimir’s architecture is optimized for handling high volumes of metric data and delivering fast query responses, making it ideal for complex monitoring environments and distributed systems.
Configuration
IPMI Sensor
[[inputs.ipmi_sensor]]
## Specify the path to the ipmitool executable
# path = "/usr/bin/ipmitool"
## Use sudo
## Setting 'use_sudo' to true will make use of sudo to run ipmitool.
## Sudo must be configured to allow the telegraf user to run ipmitool
## without a password.
# use_sudo = false
## Servers
## Specify one or more servers via a url. If no servers are specified, local
## machine sensor stats will be queried. Uses the format:
## [username[:password]@][protocol[(address)]]
## e.g. root:passwd@lan(127.0.0.1)
# servers = ["USERID:PASSW0RD@lan(192.168.1.1)"]
## Session privilege level
## Choose from: CALLBACK, USER, OPERATOR, ADMINISTRATOR
# privilege = "ADMINISTRATOR"
## Timeout
## Timeout for the ipmitool command to complete.
# timeout = "20s"
## Metric schema version
## See the plugin readme for more information on schema versioning.
# metric_version = 1
## Sensors to collect
## Choose from:
## * sdr: default, collects sensor data records
## * chassis_power_status: collects the power status of the chassis
## * dcmi_power_reading: collects the power readings from the Data Center Management Interface
# sensors = ["sdr"]
## Hex key
## Optionally provide the hex key for the IMPI connection.
# hex_key = ""
## Cache
## If ipmitool should use a cache
## Using a cache can speed up collection times depending on your device.
# use_cache = false
## Path to the ipmitools cache file (defaults to OS temp dir)
## The provided path must exist and must be writable
# cache_path = ""
Mimir
[[outputs.http]]
url = "http://data-load-balancer-backend-1:9009/api/v1/push"
data_format = "prometheusremotewrite"
username = "*****"
password = "******"
[outputs.http.headers]
Content-Type = "application/x-protobuf"
Content-Encoding = "snappy"
X-Scope-OrgID = "****"
Input and output integration examples
IPMI Sensor
-
Centralized Monitoring Dashboard: Utilize the IPMI Sensor plugin to gather metrics from multiple servers and compile them into a centralized monitoring dashboard. This enables real-time visibility into server health across data centers. Administrators can track metrics like temperature and power usage, helping them make data-driven decisions about resource allocation, potential failures, and maintenance schedules.
-
Automated Power Alerts: Incorporate the plugin into an alerting system that monitors chassis power status and triggers alerts when anomalies are detected. For instance, if the power status indicates a failure or if watt values exceed expected thresholds, automated notifications can be sent to operations teams, ensuring prompt attention to hardware issues.
-
Energy Consumption Analysis: Leverage the DCMI power readings collected via the plugin to analyze energy consumption patterns of hardware over time. By integrating these readings with analytics platforms, organizations can identify opportunities to reduce power usage, optimize efficiency, and potentially decrease operational costs in large server farms or cloud infrastructures.
-
Health Check Automation: Schedule regular health checks by using the IPMI Sensor Plugin to collect data from a fleet of servers. This data can be logged and compared against historical performance metrics to identify trends, outliers, or signs of impending hardware failure, allowing IT teams to take proactive measures and reduce downtime.
Mimir
-
Enterprise-Scale Kubernetes Monitoring: Integrate Telegraf with Grafana Mimir to stream metrics from Kubernetes clusters at enterprise scale. This enables comprehensive visibility, improved resource allocation, and proactive troubleshooting across hundreds of clusters, leveraging Mimir’s horizontal scalability and high availability.
-
Multi-tenant SaaS Application Observability: Use this plugin to centralize metrics from diverse SaaS tenants into Grafana Mimir, enabling tenant isolation and accurate billing based on resource usage. This approach provides reliable observability, efficient cost management, and secure multi-tenancy support.
-
Global Edge Network Performance Tracking: Stream latency and availability metrics from globally distributed edge servers into Grafana Mimir. Organizations can quickly identify performance degradation or outages, leveraging Mimir’s fast querying capabilities to ensure optimal service reliability and user experience.
-
Real-Time Analytics for High-Volume Microservices: Implement Telegraf metrics collection in high-volume microservices architectures, feeding data into Grafana Mimir for real-time analytics and anomaly detection. Mimir’s powerful querying enables teams to detect anomalies and quickly respond, maintaining high service availability and performance.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration