IPMI Sensor and OpenSearch Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider IPMI and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The IPMI Sensor Plugin facilitates the collection of server health metrics directly from hardware via the IPMI protocol, querying sensor data from either local or remote systems.

The OpenSearch Output Plugin allows users to send metrics directly to an OpenSearch instance using HTTP, thus facilitating effective data management and analytics within the OpenSearch ecosystem.

Integration details

IPMI Sensor

The IPMI Sensor plugin is designed to gather bare metal metrics via the command line utility ipmitool, which interfaces with the Intelligent Platform Management Interface (IPMI). This protocol provides management and monitoring capabilities for hardware components in server systems, allowing for the retrieval of critical system health metrics such as temperature, fan speeds, and power supply status from both local and remote servers. When configured without specified servers, the plugin defaults to querying the local machine’s sensor statistics using the ipmitool sdr command. In scenarios covering remote hosts, authentication is supported through username and password using the command format ipmitool -I lan -H SERVER -U USERID -P PASSW0RD sdr. This flexibility allows users to monitor systems effectively across various environments. The plugin also supports multiple sensor types, including chassis power status and DCMI power readings, catering to administrators needing real-time insight into server operations.

OpenSearch

The OpenSearch Telegraf Plugin integrates with the OpenSearch database via HTTP, allowing for the streamlined collection and storage of metrics. As a powerful tool designed specifically for OpenSearch releases from 2.x, the plugin provides robust features while offering compatibility with 1.x through the original Elasticsearch plugin. This plugin facilitates the creation and management of indexes in OpenSearch, automatically managing templates and ensuring that data is structured efficiently for analysis. The plugin supports various configuration options such as index names, authentication, health checks, and value handling, allowing it to be tailored to diverse operational requirements. Its capabilities make it essential for organizations looking to harness the power of OpenSearch for metrics storage and querying.

Configuration

IPMI Sensor

[[inputs.ipmi_sensor]]
  ## Specify the path to the ipmitool executable
  # path = "/usr/bin/ipmitool"

  ## Use sudo
  ## Setting 'use_sudo' to true will make use of sudo to run ipmitool.
  ## Sudo must be configured to allow the telegraf user to run ipmitool
  ## without a password.
  # use_sudo = false

  ## Servers
  ## Specify one or more servers via a url. If no servers are specified, local
  ## machine sensor stats will be queried. Uses the format:
  ##  [username[:password]@][protocol[(address)]]
  ##  e.g. root:passwd@lan(127.0.0.1)
  # servers = ["USERID:PASSW0RD@lan(192.168.1.1)"]

  ## Session privilege level
  ## Choose from: CALLBACK, USER, OPERATOR, ADMINISTRATOR
  # privilege = "ADMINISTRATOR"

  ## Timeout
  ## Timeout for the ipmitool command to complete.
  # timeout = "20s"

  ## Metric schema version
  ## See the plugin readme for more information on schema versioning.
  # metric_version = 1

  ## Sensors to collect
  ## Choose from:
  ##   * sdr: default, collects sensor data records
  ##   * chassis_power_status: collects the power status of the chassis
  ##   * dcmi_power_reading: collects the power readings from the Data Center Management Interface
  # sensors = ["sdr"]

  ## Hex key
  ## Optionally provide the hex key for the IMPI connection.
  # hex_key = ""

  ## Cache
  ## If ipmitool should use a cache
  ## Using a cache can speed up collection times depending on your device.
  # use_cache = false

  ## Path to the ipmitools cache file (defaults to OS temp dir)
  ## The provided path must exist and must be writable
  # cache_path = ""

OpenSearch

[[outputs.opensearch]]
  ## URLs
  ## The full HTTP endpoint URL for your OpenSearch instance. Multiple URLs can
  ## be specified as part of the same cluster, but only one URLs is used to
  ## write during each interval.
  urls = ["http://node1.os.example.com:9200"]

  ## Index Name
  ## Target index name for metrics (OpenSearch will create if it not exists).
  ## This is a Golang template (see https://pkg.go.dev/text/template)
  ## You can also specify
  ## metric name (`{{.Name}}`), tag value (`{{.Tag "tag_name"}}`), field value (`{{.Field "field_name"}}`)
  ## If the tag does not exist, the default tag value will be empty string "".
  ## the timestamp (`{{.Time.Format "xxxxxxxxx"}}`).
  ## For example: "telegraf-{{.Time.Format \"2006-01-02\"}}-{{.Tag \"host\"}}" would set it to telegraf-2023-07-27-HostName
  index_name = ""

  ## Timeout
  ## OpenSearch client timeout
  # timeout = "5s"

  ## Sniffer
  ## Set to true to ask OpenSearch a list of all cluster nodes,
  ## thus it is not necessary to list all nodes in the urls config option
  # enable_sniffer = false

  ## GZIP Compression
  ## Set to true to enable gzip compression
  # enable_gzip = false

  ## Health Check Interval
  ## Set the interval to check if the OpenSearch nodes are available
  ## Setting to "0s" will disable the health check (not recommended in production)
  # health_check_interval = "10s"

  ## Set the timeout for periodic health checks.
  # health_check_timeout = "1s"
  ## HTTP basic authentication details.
  # username = ""
  # password = ""
  ## HTTP bearer token authentication details
  # auth_bearer_token = ""

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Template Config
  ## Manage templates
  ## Set to true if you want telegraf to manage its index template.
  ## If enabled it will create a recommended index template for telegraf indexes
  # manage_template = true

  ## Template Name
  ## The template name used for telegraf indexes
  # template_name = "telegraf"

  ## Overwrite Templates
  ## Set to true if you want telegraf to overwrite an existing template
  # overwrite_template = false

  ## Document ID
  ## If set to true a unique ID hash will be sent as
  ## sha256(concat(timestamp,measurement,series-hash)) string. It will enable
  ## data resend and update metric points avoiding duplicated metrics with
  ## different id's
  # force_document_id = false

  ## Value Handling
  ## Specifies the handling of NaN and Inf values.
  ## This option can have the following values:
  ##    none    -- do not modify field-values (default); will produce an error
  ##               if NaNs or infs are encountered
  ##    drop    -- drop fields containing NaNs or infs
  ##    replace -- replace with the value in "float_replacement_value" (default: 0.0)
  ##               NaNs and inf will be replaced with the given number, -inf with the negative of that number
  # float_handling = "none"
  # float_replacement_value = 0.0

  ## Pipeline Config
  ## To use a ingest pipeline, set this to the name of the pipeline you want to use.
  # use_pipeline = "my_pipeline"

  ## Pipeline Name
  ## Additionally, you can specify a tag name using the notation (`{{.Tag "tag_name"}}`)
  ## which will be used as the pipeline name (e.g. "{{.Tag \"os_pipeline\"}}").
  ## If the tag does not exist, the default pipeline will be used as the pipeline.
  ## If no default pipeline is set, no pipeline is used for the metric.
  # default_pipeline = ""

Input and output integration examples

IPMI Sensor

  1. Centralized Monitoring Dashboard: Utilize the IPMI Sensor plugin to gather metrics from multiple servers and compile them into a centralized monitoring dashboard. This enables real-time visibility into server health across data centers. Administrators can track metrics like temperature and power usage, helping them make data-driven decisions about resource allocation, potential failures, and maintenance schedules.

  2. Automated Power Alerts: Incorporate the plugin into an alerting system that monitors chassis power status and triggers alerts when anomalies are detected. For instance, if the power status indicates a failure or if watt values exceed expected thresholds, automated notifications can be sent to operations teams, ensuring prompt attention to hardware issues.

  3. Energy Consumption Analysis: Leverage the DCMI power readings collected via the plugin to analyze energy consumption patterns of hardware over time. By integrating these readings with analytics platforms, organizations can identify opportunities to reduce power usage, optimize efficiency, and potentially decrease operational costs in large server farms or cloud infrastructures.

  4. Health Check Automation: Schedule regular health checks by using the IPMI Sensor Plugin to collect data from a fleet of servers. This data can be logged and compared against historical performance metrics to identify trends, outliers, or signs of impending hardware failure, allowing IT teams to take proactive measures and reduce downtime.

OpenSearch

  1. Dynamic Indexing for Time-Series Data: Utilize the OpenSearch Telegraf plugin to dynamically create indexes for time-series metrics, ensuring that data is stored in an organized manner conducive to time-based queries. By defining index patterns using Go templates, users can leverage the plugin to create daily or monthly indexes, which can greatly simplify data management and retrieval over time, thus enhancing analytical performance.

  2. Centralized Logging for Multi-Tenant Applications: Implement the OpenSearch plugin in a multi-tenant application where each tenant’s logs are sent to separate indexes. This enables targeted analysis and monitoring for each tenant while maintaining data isolation. By utilizing the index name templating feature, users can automatically create tenant-specific indexes, which not only streamlines the process but also enhances security and accessibility for tenant data.

  3. Integration with Machine Learning for Anomaly Detection: Leverage the OpenSearch plugin alongside machine learning tools to automatically detect anomalies in metrics data. By configuring the plugin to send real-time metrics to OpenSearch, users can apply machine learning models on the incoming data streams to identify outliers or unusual patterns, facilitating proactive monitoring and swift remedial actions.

  4. Enhanced Monitoring Dashboards with OpenSearch: Use the metrics collected from OpenSearch to create real-time dashboards that provide insights into system performance. By feeding metrics into OpenSearch, organizations can utilize OpenSearch Dashboards to visualize key performance indicators, allowing operations teams to quickly assess health and performance, and making data-driven decisions.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration