iptables and Google Cloud Monitoring Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The iptables plugin for Telegraf collects metrics on packet and byte counts for specified iptables rules, providing insights into firewall activity and performance.
The Stackdriver plugin allows users to send metrics directly to a specified project in Google Cloud Monitoring, facilitating robust monitoring capabilities across their cloud resources.
Integration details
iptables
The iptables plugin gathers packets and bytes counters for rules within a set of table and chain from the Linux iptables firewall. The plugin monitors rules identified by associated comments, as rules without comments are ignored. This approach ensures a unique identification for the monitored rules, which is particularly important since the rule number can change dynamically as rules are modified. To use this plugin effectively, users must name their rules with unique comments. The plugin also requires elevated permissions (CAP_NET_ADMIN and CAP_NET_RAW) to run, which can be configured either by running Telegraf as root (discouraged), using systemd capabilities, or by configuring sudo appropriately. Additionally, defining multiple instances of the plugin might lead to conflicts; thus, using locking mechanisms in the configuration is recommended to avoid errors during concurrent accesses.
Google Cloud Monitoring
This plugin writes metrics to a project in Google Cloud Monitoring, which used to be known as Stackdriver. Authentication is a prerequisite and can be achieved via service accounts or user credentials. The plugin is designed to group metrics by a namespace
variable and metric key, facilitating organized data management. However, users are encouraged to use the official
naming format for enhanced query efficiency. The plugin supports additional configurations for managing metric representation and allows tags to be treated as resource labels. Notably, it imposes certain restrictions on the data it can accept, such as not allowing string values or points that are out of chronological order.
Configuration
iptables
[[inputs.iptables]]
## iptables require root access on most systems.
## Setting 'use_sudo' to true will make use of sudo to run iptables.
## Users must configure sudo to allow telegraf user to run iptables with
## no password.
## iptables can be restricted to only list command "iptables -nvL".
use_sudo = false
## Setting 'use_lock' to true runs iptables with the "-w" option.
## Adjust your sudo settings appropriately if using this option
## ("iptables -w 5 -nvl")
use_lock = false
## Define an alternate executable, such as "ip6tables". Default is "iptables".
# binary = "ip6tables"
## defines the table to monitor:
table = "filter"
## defines the chains to monitor.
## NOTE: iptables rules without a comment will not be monitored.
## Read the plugin documentation for more information.
chains = [ "INPUT" ]
Google Cloud Monitoring
[[outputs.stackdriver]]
## GCP Project
project = "project-id"
## Quota Project
## Specifies the Google Cloud project that should be billed for metric ingestion.
## If omitted, the quota is charged to the service account’s default project.
## This is useful when sending metrics to multiple projects using a single service account.
## The caller must have the `serviceusage.services.use` permission on the specified project.
# quota_project = ""
## The namespace for the metric descriptor
## This is optional and users are encouraged to set the namespace as a
## resource label instead. If omitted it is not included in the metric name.
namespace = "telegraf"
## Metric Type Prefix
## The DNS name used with the metric type as a prefix.
# metric_type_prefix = "custom.googleapis.com"
## Metric Name Format
## Specifies the layout of the metric name, choose from:
## * path: 'metric_type_prefix_namespace_name_key'
## * official: 'metric_type_prefix/namespace_name_key/kind'
# metric_name_format = "path"
## Metric Data Type
## By default, telegraf will use whatever type the metric comes in as.
## However, for some use cases, forcing int64, may be preferred for values:
## * source: use whatever was passed in
## * double: preferred datatype to allow queries by PromQL.
# metric_data_type = "source"
## Tags as resource labels
## Tags defined in this option, when they exist, are added as a resource
## label and not included as a metric label. The values from tags override
## the values defined under the resource_labels config options.
# tags_as_resource_label = []
## Custom resource type
# resource_type = "generic_node"
## Override metric type by metric name
## Metric names matching the values here, globbing supported, will have the
## metric type set to the corresponding type.
# metric_counter = []
# metric_gauge = []
# metric_histogram = []
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of
## the table
## Additional resource labels
# [outputs.stackdriver.resource_labels]
# node_id = "$HOSTNAME"
# namespace = "myapp"
# location = "eu-north0"
Input and output integration examples
iptables
-
Monitoring Firewall Performance: Monitor the performance and efficiency of your firewall rules in real time. By tracking packet and byte counters, network administrators can identify which rules are most active and may require optimization. This enables proactive management of firewall configurations to enhance security and performance, especially in environments where dynamic adjustments are frequently made.
-
Understanding Traffic Patterns: Analyze incoming and outgoing traffic patterns based on specific rules. By leveraging the metrics gathered by this plugin, system admins can gain insights into which services are receiving the most traffic, effectively identifying popular services and potential security threats from unusual traffic spikes.
-
Automated Alerting on Traffic Anomalies: Integrate the iptables plugin with an alerting system to notify administrators of unusual activity detected by the firewall. By setting thresholds on the collected metrics, such as sudden increases in packets dropped or unexpected protocol use, teams can automate responses to potential security incidents, enabling swift remediation of threats to the network.
-
Comparative Analysis of Firewall Rules: Conduct comparative analyses of different firewall rules over time. By collecting historical packet and byte metrics, organizations can evaluate the effectiveness of various rules, making data-driven decisions on which rules to modify, reinforce, or remove altogether, thus streamlining their firewall configurations.
Google Cloud Monitoring
-
Multi-Project Metric Aggregation: Use this plugin to send aggregated metrics from various applications across different projects into a single Google Cloud Monitoring project. This use case helps centralize metrics for teams managing multiple applications, providing a unified view for performance monitoring and enhancing decision-making. By configuring different quota projects for billing, organizations can ensure proper cost management while benefiting from a consolidated monitoring strategy.
-
Anomaly Detection Setup: Integrate the plugin with a machine learning-based analytics tool that identifies anomalies in the collected metrics. Using the historical data provided by the plugin, the tool can learn normal baseline behavior and promptly alert the operations team when unusual patterns arise, enabling proactive troubleshooting and minimizing service disruptions.
-
Dynamic Resource Labeling: Implement dynamic tagging by utilizing the tags_as_resource_label option to adaptively attach resource labels based on runtime conditions. This setup allows metrics to provide context-sensitive information, such as varying environmental parameters or operational states, enhancing the granularity of monitoring and reporting without changing the fundamental metric structure.
-
Custom Metric Visualization Dashboards: Leverage the data collected by the Google Cloud Monitoring output plugin to feed a custom metrics visualization dashboard using a third-party framework. By visualizing metrics in real-time, teams can achieve better situational awareness, notably by correlating different metrics, improving operational decision-making, and streamlining performance management workflows.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration