IPVS and MariaDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The IPVS plugin is designed to collect metrics related to IPVS virtual and real servers on Linux systems.
This plugin writes metrics from Telegraf directly into MariaDB using parameterized SQL INSERT statements, offering a flexible way to store metrics in structured, relational tables.
Integration details
IPVS
The IPVS plugin gathers metrics about IPVS virtual and real servers using the Linux kernel netlink socket interface. As a component specifically designed for Linux, it tracks performance related to IP virtual servers, allowing users to monitor various attributes such as active connections, packet statistics, and byte counts. Key metrics include those for both virtual and real servers, facilitating a comprehensive view of server performance. The plugin also requires the Telegraf process to run with appropriate permissions, typically as root or a user with specific capabilities for proper operation.
MariaDB
The SQL output plugin in Telegraf enables direct writing of metrics into SQL-compatible databases like MariaDB by executing parameterized SQL statements. With support for the MySQL driver, the plugin seamlessly integrates with MariaDB for reliable, structured metric storage. This setup is ideal for users who prefer SQL-based analytics or want to store metrics alongside business data for unified querying. MariaDB is a community-developed, enterprise-grade fork of MySQL that emphasizes performance, security, and openness. The plugin supports inserting time series metrics into custom schemas, enabling flexible analytics and integrations with BI tools like Metabase or Grafana using SQL connectors.
Configuration
IPVS
[[inputs.ipvs]]
# no configuration
MariaDB
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
Input and output integration examples
IPVS
-
Load Balancing Performance Monitoring: Use the IPVS plugin to monitor the performance of a load balancing setup in a Linux environment where IPVS is implemented. By collecting metrics such as byte counts, packet rates, and active connections, administrators can gain real-time insights into server performance, allowing for proactive adjustments to load distribution strategies and ensuring that no individual server becomes a bottleneck.
-
Automated Alerting for Connection Thresholds: Integrate the metrics collected by the IPVS plugin with an alerting system to automatically notify administrators when active connections exceed or fall below specified thresholds. This use case enables dynamic scaling of backend resources, optimizing application performance and resource utilization, while minimizing the risk of sudden service disruptions.
-
Historical Performance Trend Analysis: Store the metrics gathered by the IPVS plugin in a time-series database for historical analysis. By analyzing trends over time, organizations can identify patterns in server performance, correlate them with application usage spikes, and make informed decisions regarding infrastructure upgrades or maintenance schedules to better handle peak loads.
MariaDB
-
Business Intelligence Integration: Store application performance metrics directly into MariaDB and connect it to BI tools like Metabase or Apache Superset. This setup allows blending of operational data with business KPIs for unified dashboards, enhancing visibility across departments.
-
Compliance Reporting with Historical Metrics: Use this plugin to log metrics into MariaDB for audit and compliance use cases. The relational model enables precise querying of past performance indicators with timestamped entries, supporting regulatory documentation.
-
Custom Alerting Based on SQL Logic: Insert metrics into MariaDB and use custom SQL queries to define alert thresholds or conditions. Combined with cron jobs or scheduled scripts, this enables advanced alerting workflows not possible with traditional metric platforms.
-
IoT Sensor Metrics Storage: Collect sensor data from IoT devices via Telegraf and store it in MariaDB using a normalized schema. This approach is cost-effective and integrates well with existing SQL-based systems for real-time or historical analysis.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration