JTI OpenConfig Telemetry and MariaDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The JTI OpenConfig Telemetry plugin allows users to collect real-time telemetry data from devices running Juniper’s implementation of the OpenConfig model, leveraging the Junos Telemetry Interface for efficient data retrieval.
This plugin writes metrics from Telegraf directly into MariaDB using parameterized SQL INSERT statements, offering a flexible way to store metrics in structured, relational tables.
Integration details
JTI OpenConfig Telemetry
This plugin reads data from Juniper Networks’ OpenConfig telemetry implementation using the Junos Telemetry Interface (JTI). OpenConfig is an initiative aimed at enabling standardized and open network device telemetry through a common model for various devices and protocols. The JTI allows for the collection of this telemetry data in a real-time manner from various sensors defined within the configuration. Configurable parameters for this plugin include the ability to specify device addresses, authentication credentials, sampling frequency, and multiple sensors with potentially different reporting rates. The plugin uniquely handles time-stamping either through the collection time or the timestamp provided in the data, allowing for flexibility in how data is processed. Given its support for TLS for secure communication, the plugin is well-suited for integration into both traditional and modern network management systems, enhancing visibility into network performance and reliability.
MariaDB
The SQL output plugin in Telegraf enables direct writing of metrics into SQL-compatible databases like MariaDB by executing parameterized SQL statements. With support for the MySQL driver, the plugin seamlessly integrates with MariaDB for reliable, structured metric storage. This setup is ideal for users who prefer SQL-based analytics or want to store metrics alongside business data for unified querying. MariaDB is a community-developed, enterprise-grade fork of MySQL that emphasizes performance, security, and openness. The plugin supports inserting time series metrics into custom schemas, enabling flexible analytics and integrations with BI tools like Metabase or Grafana using SQL connectors.
Configuration
JTI OpenConfig Telemetry
[[inputs.jti_openconfig_telemetry]]
## List of device addresses to collect telemetry from
servers = ["localhost:1883"]
## Authentication details. Username and password are must if device expects
## authentication. Client ID must be unique when connecting from multiple instances
## of telegraf to the same device
username = "user"
password = "pass"
client_id = "telegraf"
## Frequency to get data
sample_frequency = "1000ms"
## Sensors to subscribe for
## A identifier for each sensor can be provided in path by separating with space
## Else sensor path will be used as identifier
## When identifier is used, we can provide a list of space separated sensors.
## A single subscription will be created with all these sensors and data will
## be saved to measurement with this identifier name
sensors = [
"/interfaces/",
"collection /components/ /lldp",
]
## We allow specifying sensor group level reporting rate. To do this, specify the
## reporting rate in Duration at the beginning of sensor paths / collection
## name. For entries without reporting rate, we use configured sample frequency
sensors = [
"1000ms customReporting /interfaces /lldp",
"2000ms collection /components",
"/interfaces",
]
## Timestamp Source
## Set to 'collection' for time of collection, and 'data' for using the time
## provided by the _timestamp field.
# timestamp_source = "collection"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Delay between retry attempts of failed RPC calls or streams. Defaults to 1000ms.
## Failed streams/calls will not be retried if 0 is provided
retry_delay = "1000ms"
## Period for sending keep-alive packets on idle connections
## This is helpful to identify broken connections to the server
# keep_alive_period = "10s"
## To treat all string values as tags, set this to true
str_as_tags = false
MariaDB
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
Input and output integration examples
JTI OpenConfig Telemetry
-
Network Performance Monitoring: Use the JTI OpenConfig Telemetry plugin to monitor network performance metrics from multiple Juniper devices in real-time. By configuring various sensors, operators can gain insights into interface performance, traffic patterns, and error rates, allowing for proactive troubleshooting and optimization of the network.
-
Automated Fault Detection: Integrate the telemetry data collected via this plugin with a fault detection system that triggers alerts based on predefined thresholds. For example, when a specific sensor indicates a fault or threshold breach, automated scripts can be initiated to remediate the situation, dramatically improving response times.
-
Historical Performance Analysis: By forwarding the collected telemetry data into a time-series database, organizations can perform historical analysis on network performance. This enables teams to identify trends over time, spot anomalies, and make more informed decisions regarding network capacity planning and resource allocation.
-
Real-Time Dashboards for Network Operations: Leverage the real-time data gathered through this plugin to power visualization dashboards that provide network operators with live insights into performance metrics. This facilitates better operational awareness and quicker decision-making during critical events.
MariaDB
-
Business Intelligence Integration: Store application performance metrics directly into MariaDB and connect it to BI tools like Metabase or Apache Superset. This setup allows blending of operational data with business KPIs for unified dashboards, enhancing visibility across departments.
-
Compliance Reporting with Historical Metrics: Use this plugin to log metrics into MariaDB for audit and compliance use cases. The relational model enables precise querying of past performance indicators with timestamped entries, supporting regulatory documentation.
-
Custom Alerting Based on SQL Logic: Insert metrics into MariaDB and use custom SQL queries to define alert thresholds or conditions. Combined with cron jobs or scheduled scripts, this enables advanced alerting workflows not possible with traditional metric platforms.
-
IoT Sensor Metrics Storage: Collect sensor data from IoT devices via Telegraf and store it in MariaDB using a normalized schema. This approach is cost-effective and integrates well with existing SQL-based systems for real-time or historical analysis.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration