JTI OpenConfig Telemetry and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The JTI OpenConfig Telemetry plugin allows users to collect real-time telemetry data from devices running Juniper’s implementation of the OpenConfig model, leveraging the Junos Telemetry Interface for efficient data retrieval.
The MongoDB Telegraf Plugin enables users to send metrics to a MongoDB database, automatically managing time series collections.
Integration details
JTI OpenConfig Telemetry
This plugin reads data from Juniper Networks’ OpenConfig telemetry implementation using the Junos Telemetry Interface (JTI). OpenConfig is an initiative aimed at enabling standardized and open network device telemetry through a common model for various devices and protocols. The JTI allows for the collection of this telemetry data in a real-time manner from various sensors defined within the configuration. Configurable parameters for this plugin include the ability to specify device addresses, authentication credentials, sampling frequency, and multiple sensors with potentially different reporting rates. The plugin uniquely handles time-stamping either through the collection time or the timestamp provided in the data, allowing for flexibility in how data is processed. Given its support for TLS for secure communication, the plugin is well-suited for integration into both traditional and modern network management systems, enhancing visibility into network performance and reliability.
MongoDB
This plugin sends metrics to MongoDB and seamlessly integrates with its time series functionality, allowing for automatic creation of collections as time series when they don’t already exist. It requires MongoDB version 5.0 or higher to utilize the time series collections feature, which is vital for efficiently storing and querying time-based data. This plugin enhances the monitoring capabilities by ensuring that all relevant metrics are stored and organized correctly within MongoDB, providing users the ability to leverage MongoDB’s powerful querying and aggregation features for time series analysis.
Configuration
JTI OpenConfig Telemetry
[[inputs.jti_openconfig_telemetry]]
## List of device addresses to collect telemetry from
servers = ["localhost:1883"]
## Authentication details. Username and password are must if device expects
## authentication. Client ID must be unique when connecting from multiple instances
## of telegraf to the same device
username = "user"
password = "pass"
client_id = "telegraf"
## Frequency to get data
sample_frequency = "1000ms"
## Sensors to subscribe for
## A identifier for each sensor can be provided in path by separating with space
## Else sensor path will be used as identifier
## When identifier is used, we can provide a list of space separated sensors.
## A single subscription will be created with all these sensors and data will
## be saved to measurement with this identifier name
sensors = [
"/interfaces/",
"collection /components/ /lldp",
]
## We allow specifying sensor group level reporting rate. To do this, specify the
## reporting rate in Duration at the beginning of sensor paths / collection
## name. For entries without reporting rate, we use configured sample frequency
sensors = [
"1000ms customReporting /interfaces /lldp",
"2000ms collection /components",
"/interfaces",
]
## Timestamp Source
## Set to 'collection' for time of collection, and 'data' for using the time
## provided by the _timestamp field.
# timestamp_source = "collection"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Delay between retry attempts of failed RPC calls or streams. Defaults to 1000ms.
## Failed streams/calls will not be retried if 0 is provided
retry_delay = "1000ms"
## Period for sending keep-alive packets on idle connections
## This is helpful to identify broken connections to the server
# keep_alive_period = "10s"
## To treat all string values as tags, set this to true
str_as_tags = false
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
JTI OpenConfig Telemetry
-
Network Performance Monitoring: Use the JTI OpenConfig Telemetry plugin to monitor network performance metrics from multiple Juniper devices in real-time. By configuring various sensors, operators can gain insights into interface performance, traffic patterns, and error rates, allowing for proactive troubleshooting and optimization of the network.
-
Automated Fault Detection: Integrate the telemetry data collected via this plugin with a fault detection system that triggers alerts based on predefined thresholds. For example, when a specific sensor indicates a fault or threshold breach, automated scripts can be initiated to remediate the situation, dramatically improving response times.
-
Historical Performance Analysis: By forwarding the collected telemetry data into a time-series database, organizations can perform historical analysis on network performance. This enables teams to identify trends over time, spot anomalies, and make more informed decisions regarding network capacity planning and resource allocation.
-
Real-Time Dashboards for Network Operations: Leverage the real-time data gathered through this plugin to power visualization dashboards that provide network operators with live insights into performance metrics. This facilitates better operational awareness and quicker decision-making during critical events.
MongoDB
-
Dynamic Logging to MongoDB for IoT Devices: Utilize this plugin to collect and store metrics from a fleet of IoT devices in real-time. By sending device logs directly to MongoDB, you can create a centralized database that allows for easy access and querying of health metrics and performance data, enabling proactive maintenance and troubleshooting based on historical trends.
-
Time Series Analysis of Web Traffic: Use the MongoDB Telegraf Plugin to gather and analyze web traffic metrics over time. This application can help you understand peak usage times, user interactions, and behavior patterns, which can guide marketing strategies and infrastructure scaling decisions for improved user experience.
-
Automated Monitoring and Alerting System: Integrate the MongoDB plugin into an automated monitoring system that tracks application performance metrics. With time series collections, you can set up alerts based on specific thresholds, allowing your team to respond to potential issues before they affect users. This proactive management can enhance service reliability and overall performance.
-
Data Retention and TTL Management in Metrics Storage: Leverage the TTL feature for documents within MongoDB collections to auto-expire outdated metrics. This is particularly useful for environments where only recent performance data is relevant, preventing your MongoDB database from becoming cluttered with old metrics and ensuring efficient data management.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration