Kafka and Elasticsearch Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kafka plugin reads from Kafka and creates metrics using one of the supported input data formats.

The Telegraf Elasticsearch Plugin seamlessly sends metrics to an Elasticsearch server. The plugin handles template creation and dynamic index management, and supports various Elasticsearch-specific features to ensure data is formatted correctly for storage and retrieval.

Integration details

Kafka

The Kafka plugin allows you to read messages from Kafka topics and create metrics. It supports various features, including SASL authentication, message headers as tags, and different message consumption strategies.

Elasticsearch

This plugin writes metrics to Elasticsearch, a distributed, RESTful search and analytics engine capable of storing large amounts of data in near real-time. It is designed to handle Elasticsearch versions 5.x through 7.x and utilizes its dynamic template features to manage data type mapping properly. The plugin supports advanced features such as template management, dynamic index naming, and integration with OpenSearch. It also allows configurations for authentication and health monitoring of the Elasticsearch nodes.

Configuration

Kafka


[[inputs.kafka_consumer]]
              ## Kafka brokers.
              brokers = ["localhost:9092"]

              ## Set the minimal supported Kafka version. Should be a string contains
              ## 4 digits in case if it is 0 version and 3 digits for versions starting
              ## from 1.0.0 separated by dot. This setting enables the use of new
              ## Kafka features and APIs.  Must be 0.10.2.0(used as default) or greater.
              ## Please, check the list of supported versions at
              ## https://pkg.go.dev/github.com/Shopify/sarama#SupportedVersions
              ##   ex: kafka_version = "2.6.0"
              ##   ex: kafka_version = "0.10.2.0"
              # kafka_version = "0.10.2.0"

              ## Topics to consume.
              topics = ["telegraf"]

              ## Topic regular expressions to consume.  Matches will be added to topics.
              ## Example: topic_regexps = [ "*test", "metric[0-9A-z]*" ]
              # topic_regexps = [ ]

              ## When set this tag will be added to all metrics with the topic as the value.
              # topic_tag = ""

              ## The list of Kafka message headers that should be pass as metric tags
              ## works only for Kafka version 0.11+, on lower versions the message headers
              ## are not available
              # msg_headers_as_tags = []

              ## The name of kafka message header which value should override the metric name.
              ## In case when the same header specified in current option and in msg_headers_as_tags
              ## option, it will be excluded from the msg_headers_as_tags list.
              # msg_header_as_metric_name = ""

              ## Set metric(s) timestamp using the given source.
              ## Available options are:
              ##   metric -- do not modify the metric timestamp
              ##   inner  -- use the inner message timestamp (Kafka v0.10+)
              ##   outer  -- use the outer (compressed) block timestamp (Kafka v0.10+)
              # timestamp_source = "metric"

              ## Optional Client id
              # client_id = "Telegraf"

              ## Optional TLS Config
              # enable_tls = false
              # tls_ca = "/etc/telegraf/ca.pem"
              # tls_cert = "/etc/telegraf/cert.pem"
              # tls_key = "/etc/telegraf/key.pem"
              ## Use TLS but skip chain & host verification
              # insecure_skip_verify = false

              ## Period between keep alive probes.
              ## Defaults to the OS configuration if not specified or zero.
              # keep_alive_period = "15s"

              ## SASL authentication credentials.  These settings should typically be used
              ## with TLS encryption enabled
              # sasl_username = "kafka"
              # sasl_password = "secret"

              ## Optional SASL:
              ## one of: OAUTHBEARER, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512, GSSAPI
              ## (defaults to PLAIN)
              # sasl_mechanism = ""

              ## used if sasl_mechanism is GSSAPI
              # sasl_gssapi_service_name = ""
              # ## One of: KRB5_USER_AUTH and KRB5_KEYTAB_AUTH
              # sasl_gssapi_auth_type = "KRB5_USER_AUTH"
              # sasl_gssapi_kerberos_config_path = "/"
              # sasl_gssapi_realm = "realm"
              # sasl_gssapi_key_tab_path = ""
              # sasl_gssapi_disable_pafxfast = false

              ## used if sasl_mechanism is OAUTHBEARER
              # sasl_access_token = ""

              ## SASL protocol version.  When connecting to Azure EventHub set to 0.
              # sasl_version = 1

              # Disable Kafka metadata full fetch
              # metadata_full = false

              ## Name of the consumer group.
              # consumer_group = "telegraf_metrics_consumers"

              ## Compression codec represents the various compression codecs recognized by
              ## Kafka in messages.
              ##  0 : None
              ##  1 : Gzip
              ##  2 : Snappy
              ##  3 : LZ4
              ##  4 : ZSTD
              # compression_codec = 0
              ## Initial offset position; one of "oldest" or "newest".
              # offset = "oldest"

              ## Consumer group partition assignment strategy; one of "range", "roundrobin" or "sticky".
              # balance_strategy = "range"

              ## Maximum number of retries for metadata operations including
              ## connecting. Sets Sarama library's Metadata.Retry.Max config value. If 0 or
              ## unset, use the Sarama default of 3,
              # metadata_retry_max = 0

              ## Type of retry backoff. Valid options: "constant", "exponential"
              # metadata_retry_type = "constant"

              ## Amount of time to wait before retrying. When metadata_retry_type is
              ## "constant", each retry is delayed this amount. When "exponential", the
              ## first retry is delayed this amount, and subsequent delays are doubled. If 0
              ## or unset, use the Sarama default of 250 ms
              # metadata_retry_backoff = 0

              ## Maximum amount of time to wait before retrying when metadata_retry_type is
              ## "exponential". Ignored for other retry types. If 0, there is no backoff
              ## limit.
              # metadata_retry_max_duration = 0

              ## When set to true, this turns each bootstrap broker address into a set of
              ## IPs, then does a reverse lookup on each one to get its canonical hostname.
              ## This list of hostnames then replaces the original address list.
              ## resolve_canonical_bootstrap_servers_only = false

              ## Strategy for making connection to kafka brokers. Valid options: "startup",
              ## "defer". If set to "defer" the plugin is allowed to start before making a
              ## connection. This is useful if the broker may be down when telegraf is
              ## started, but if there are any typos in the broker setting, they will cause
              ## connection failures without warning at startup
              # connection_strategy = "startup"

              ## Maximum length of a message to consume, in bytes (default 0/unlimited);
              ## larger messages are dropped
              max_message_len = 1000000

              ## Max undelivered messages
              ## This plugin uses tracking metrics, which ensure messages are read to
              ## outputs before acknowledging them to the original broker to ensure data
              ## is not lost. This option sets the maximum messages to read from the
              ## broker that have not been written by an output.
              ##
              ## This value needs to be picked with awareness of the agent's
              ## metric_batch_size value as well. Setting max undelivered messages too high
              ## can result in a constant stream of data batches to the output. While
              ## setting it too low may never flush the broker's messages.
              # max_undelivered_messages = 1000

              ## Maximum amount of time the consumer should take to process messages. If
              ## the debug log prints messages from sarama about 'abandoning subscription
              ## to [topic] because consuming was taking too long', increase this value to
              ## longer than the time taken by the output plugin(s).
              ##
              ## Note that the effective timeout could be between 'max_processing_time' and
              ## '2 * max_processing_time'.
              # max_processing_time = "100ms"

              ## The default number of message bytes to fetch from the broker in each
              ## request (default 1MB). This should be larger than the majority of
              ## your messages, or else the consumer will spend a lot of time
              ## negotiating sizes and not actually consuming. Similar to the JVM's
              ## `fetch.message.max.bytes`.
              # consumer_fetch_default = "1MB"

              ## Data format to consume.
              ## Each data format has its own unique set of configuration options, read
              ## more about them here:
              ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
              data_format = "influx"

Elasticsearch


[[outputs.elasticsearch]]
  ## The full HTTP endpoint URL for your Elasticsearch instance
  ## Multiple urls can be specified as part of the same cluster,
  ## this means that only ONE of the urls will be written to each interval
  urls = [ "http://node1.es.example.com:9200" ] # required.
  ## Elasticsearch client timeout, defaults to "5s" if not set.
  timeout = "5s"
  ## Set to true to ask Elasticsearch a list of all cluster nodes,
  ## thus it is not necessary to list all nodes in the urls config option
  enable_sniffer = false
  ## Set to true to enable gzip compression
  enable_gzip = false
  ## Set the interval to check if the Elasticsearch nodes are available
  ## Setting to "0s" will disable the health check (not recommended in production)
  health_check_interval = "10s"
  ## Set the timeout for periodic health checks.
  # health_check_timeout = "1s"
  ## HTTP basic authentication details.
  ## HTTP basic authentication details
  # username = "telegraf"
  # password = "mypassword"
  ## HTTP bearer token authentication details
  # auth_bearer_token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9"

  ## Index Config
  ## The target index for metrics (Elasticsearch will create if it not exists).
  ## You can use the date specifiers below to create indexes per time frame.
  ## The metric timestamp will be used to decide the destination index name
  # %Y - year (2016)
  # %y - last two digits of year (00..99)
  # %m - month (01..12)
  # %d - day of month (e.g., 01)
  # %H - hour (00..23)
  # %V - week of the year (ISO week) (01..53)
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the index name. If the tag does not exist,
  ## the default tag value will be used.
  # index_name = "telegraf-{{host}}-%Y.%m.%d"
  # default_tag_value = "none"
  index_name = "telegraf-%Y.%m.%d" # required.

  ## Optional Index Config
  ## Set to true if Telegraf should use the "create" OpType while indexing
  # use_optype_create = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Template Config
  ## Set to true if you want telegraf to manage its index template.
  ## If enabled it will create a recommended index template for telegraf indexes
  manage_template = true
  ## The template name used for telegraf indexes
  template_name = "telegraf"
  ## Set to true if you want telegraf to overwrite an existing template
  overwrite_template = false
  ## If set to true a unique ID hash will be sent as sha256(concat(timestamp,measurement,series-hash)) string
  ## it will enable data resend and update metric points avoiding duplicated metrics with different id's
  force_document_id = false

  ## Specifies the handling of NaN and Inf values.
  ## This option can have the following values:
  ##    none    -- do not modify field-values (default); will produce an error if NaNs or infs are encountered
  ##    drop    -- drop fields containing NaNs or infs
  ##    replace -- replace with the value in "float_replacement_value" (default: 0.0)
  ##               NaNs and inf will be replaced with the given number, -inf with the negative of that number
  # float_handling = "none"
  # float_replacement_value = 0.0

  ## Pipeline Config
  ## To use a ingest pipeline, set this to the name of the pipeline you want to use.
  # use_pipeline = "my_pipeline"
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the pipeline name. If the tag does not exist,
  ## the default pipeline will be used as the pipeline. If no default pipeline is set,
  ## no pipeline is used for the metric.
  # use_pipeline = "{{es_pipeline}}"
  # default_pipeline = "my_pipeline"
  #
  # Custom HTTP headers
  # To pass custom HTTP headers please define it in a given below section
  # [outputs.elasticsearch.headers]
  #    "X-Custom-Header" = "custom-value"

  ## Template Index Settings
  ## Overrides the template settings.index section with any provided options.
  ## Defaults provided here in the config
  # template_index_settings = {
  #   refresh_interval = "10s",
  #   mapping.total_fields.limit = 5000,
  #   auto_expand_replicas = "0-1",
  #   codec = "best_compression"
  # }

Input and output integration examples

Kafka

  1. Real-Time Data Processing: Use the Kafka Consumer Input Plugin to read data from Kafka topics in real-time, allowing for immediate metrics generation and processing.
  2. SASL Authentication: Configure the plugin with SASL authentication to securely connect to Kafka brokers, ensuring that only authorized users can access the data.
  3. Multiple Topic Consumption: Set up the plugin to consume from multiple Kafka topics by specifying them in the configuration. This allows you to gather metrics from various data sources simultaneously.
  4. Message Transformation: Leverage the plugin’s ability to parse and transform messages into metrics based on the specified data_format, enabling tailored data handling for your specific use case.

Elasticsearch

  1. Time-based Indexing: Use this plugin to store metrics in Elasticsearch to index each metric based on the time collected. For example, CPU metrics can be stored in a daily index named <code telegraf-2023.01.01, allowing easy time-based queries and retention policies.

  2. Dynamic Templates Management: Utilize the template management feature to automatically create a custom template tailored to your metrics. This allows you to define how different fields are indexed and analyzed without manually configuring Elasticsearch, ensuring an optimal data structure for querying.

  3. OpenSearch Compatibility: If you are using AWS OpenSearch, you can configure this plugin to work seamlessly by activating compatibility mode, ensuring your existing Elasticsearch clients remain functional and compatible with newer cluster setups.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration

MQTT and InfluxDB Integration

The MQTT plugin is a service input for reading metrics from specified MQTT topics. It supports various data formats and configuration options for reliable message consumption.

View Integration