Kafka and Microsoft Fabric Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin allows you to gather metrics from Kafka topics in real-time, enhancing data monitoring and collection capabilities within your Telegraf setup.
The Microsoft Fabric plugin writes metrics to Real time analytics in Fabric services, enabling powerful data storage and analysis capabilities.
Integration details
Kafka
The Kafka Telegraf plugin is designed to read data from Kafka topics and create metrics using supported input data formats. As a service input plugin, it listens continuously for incoming metrics and events, differing from standard input plugins that operate at fixed intervals. This particular plugin can utilize features from various Kafka versions and is capable of consuming messages from specified topics, applying configurations such as security credentials using SASL, and managing message processing with options for message offsets and consumer groups. The flexibility of this plugin allows it to handle a wide array of message formats and use cases, making it a valuable asset for applications relying on Kafka for data ingestion.
Microsoft Fabric
This plugin allows you to leverage Microsoft Fabric’s capabilities to store and analyze your Telegraf metrics. Eventhouse is a high-performance, scalable data-store designed for real-time analytics. It allows you to ingest, store and query large volumes of data with low latency. The plugin supports both events and metrics with versatile grouping options. It provides various configuration parameters including connection strings specifying details like the data source, ingestion types, and which tables to use for storage. With support for streaming ingestion and event streams, this plugin enables seamless integration and data flow into Microsoft’s analytics ecosystem, allowing for rich data querying capabilities and near-real-time processing.
Configuration
Kafka
[[inputs.kafka_consumer]]
## Kafka brokers.
brokers = ["localhost:9092"]
## Set the minimal supported Kafka version. Should be a string contains
## 4 digits in case if it is 0 version and 3 digits for versions starting
## from 1.0.0 separated by dot. This setting enables the use of new
## Kafka features and APIs. Must be 0.10.2.0(used as default) or greater.
## Please, check the list of supported versions at
## https://pkg.go.dev/github.com/Shopify/sarama#SupportedVersions
## ex: kafka_version = "2.6.0"
## ex: kafka_version = "0.10.2.0"
# kafka_version = "0.10.2.0"
## Topics to consume.
topics = ["telegraf"]
## Topic regular expressions to consume. Matches will be added to topics.
## Example: topic_regexps = [ "*test", "metric[0-9A-z]*" ]
# topic_regexps = [ ]
## When set this tag will be added to all metrics with the topic as the value.
# topic_tag = ""
## The list of Kafka message headers that should be pass as metric tags
## works only for Kafka version 0.11+, on lower versions the message headers
## are not available
# msg_headers_as_tags = []
## The name of kafka message header which value should override the metric name.
## In case when the same header specified in current option and in msg_headers_as_tags
## option, it will be excluded from the msg_headers_as_tags list.
# msg_header_as_metric_name = ""
## Set metric(s) timestamp using the given source.
## Available options are:
## metric -- do not modify the metric timestamp
## inner -- use the inner message timestamp (Kafka v0.10+)
## outer -- use the outer (compressed) block timestamp (Kafka v0.10+)
# timestamp_source = "metric"
## Optional Client id
# client_id = "Telegraf"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Period between keep alive probes.
## Defaults to the OS configuration if not specified or zero.
# keep_alive_period = "15s"
## SASL authentication credentials. These settings should typically be used
## with TLS encryption enabled
# sasl_username = "kafka"
# sasl_password = "secret"
## Optional SASL:
## one of: OAUTHBEARER, PLAIN, SCRAM-SHA-256, SCRAM-SHA-512, GSSAPI
## (defaults to PLAIN)
# sasl_mechanism = ""
## used if sasl_mechanism is GSSAPI
# sasl_gssapi_service_name = ""
# ## One of: KRB5_USER_AUTH and KRB5_KEYTAB_AUTH
# sasl_gssapi_auth_type = "KRB5_USER_AUTH"
# sasl_gssapi_kerberos_config_path = "/"
# sasl_gssapi_realm = "realm"
# sasl_gssapi_key_tab_path = ""
# sasl_gssapi_disable_pafxfast = false
## used if sasl_mechanism is OAUTHBEARER
# sasl_access_token = ""
## SASL protocol version. When connecting to Azure EventHub set to 0.
# sasl_version = 1
# Disable Kafka metadata full fetch
# metadata_full = false
## Name of the consumer group.
# consumer_group = "telegraf_metrics_consumers"
## Compression codec represents the various compression codecs recognized by
## Kafka in messages.
## 0 : None
## 1 : Gzip
## 2 : Snappy
## 3 : LZ4
## 4 : ZSTD
# compression_codec = 0
## Initial offset position; one of "oldest" or "newest".
# offset = "oldest"
## Consumer group partition assignment strategy; one of "range", "roundrobin" or "sticky".
# balance_strategy = "range"
## Maximum number of retries for metadata operations including
## connecting. Sets Sarama library's Metadata.Retry.Max config value. If 0 or
## unset, use the Sarama default of 3,
# metadata_retry_max = 0
## Type of retry backoff. Valid options: "constant", "exponential"
# metadata_retry_type = "constant"
## Amount of time to wait before retrying. When metadata_retry_type is
## "constant", each retry is delayed this amount. When "exponential", the
## first retry is delayed this amount, and subsequent delays are doubled. If 0
## or unset, use the Sarama default of 250 ms
# metadata_retry_backoff = 0
## Maximum amount of time to wait before retrying when metadata_retry_type is
## "exponential". Ignored for other retry types. If 0, there is no backoff
## limit.
# metadata_retry_max_duration = 0
## When set to true, this turns each bootstrap broker address into a set of
## IPs, then does a reverse lookup on each one to get its canonical hostname.
## This list of hostnames then replaces the original address list.
## resolve_canonical_bootstrap_servers_only = false
## Strategy for making connection to kafka brokers. Valid options: "startup",
## "defer". If set to "defer" the plugin is allowed to start before making a
## connection. This is useful if the broker may be down when telegraf is
## started, but if there are any typos in the broker setting, they will cause
## connection failures without warning at startup
# connection_strategy = "startup"
## Maximum length of a message to consume, in bytes (default 0/unlimited);
## larger messages are dropped
max_message_len = 1000000
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Maximum amount of time the consumer should take to process messages. If
## the debug log prints messages from sarama about 'abandoning subscription
## to [topic] because consuming was taking too long', increase this value to
## longer than the time taken by the output plugin(s).
##
## Note that the effective timeout could be between 'max_processing_time' and
## '2 * max_processing_time'.
# max_processing_time = "100ms"
## The default number of message bytes to fetch from the broker in each
## request (default 1MB). This should be larger than the majority of
## your messages, or else the consumer will spend a lot of time
## negotiating sizes and not actually consuming. Similar to the JVM's
## `fetch.message.max.bytes`.
# consumer_fetch_default = "1MB"
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Microsoft Fabric
[[outputs.microsoft_fabric]]
## The URI property of the resource on Azure
connection_string = "https://trd-abcd.xx.kusto.fabric.microsoft.com;Database=kusto_eh;Table Name=telegraf_dump;Key=value"
## Client timeout
# timeout = "30s"
Input and output integration examples
Kafka
-
Real-Time Data Processing: Use the Kafka plugin to feed live data from a Kafka topic into a monitoring system. This can be particularly useful for applications that require instant feedback on performance metrics or user activity, allowing businesses to react more swiftly to changing conditions in their environments.
-
Dynamic Metrics Collection: Leverage this plugin to dynamically adjust the metrics being captured based on events occurring within Kafka. For instance, by integrating with other services, users can have the plugin reconfigure itself on-the-fly, ensuring relevant metrics are always collected according to the needs of the business or application.
-
Centralized Logging and Monitoring: Implement a centralized logging system using the Kafka Consumer Plugin to aggregate logs from multiple services into a unified monitoring dashboard. This setup can help identify issues across different services and improve overall system observability and troubleshooting capabilities.
-
Anomaly Detection System: Combine Kafka with machine learning algorithms for real-time anomaly detection. By constantly analyzing streaming data, this setup can automatically identify unusual patterns, triggering alerts and mitigating potential issues more effectively.
Microsoft Fabric
-
Real-time Monitoring Dashboards: Utilize the Microsoft Fabric plugin to feed live metrics from your applications into a real-time dashboard on Microsoft Fabric. This allows teams to visualize key performance indicators instantly, enabling quick decision-making and timely responses to performance issues.
-
Automated Data Ingestion from IoT Devices: Use this plugin in scenarios where metrics from IoT devices need to be ingested into Azure for analysis. Using the plugin’s capabilities, data can be streamed continuously, facilitating real-time analytics and reporting without complex coding efforts.
-
Cross-Platform Data Aggregation: Leverage the plugin to consolidate metrics from multiple systems and applications into a single Azure Data Explorer table. This use case enables easier data management and analysis by centralizing disparate data sources within a unified analytics framework.
-
Enhanced Event Transformation Workflows: Integrate the plugin with Eventstreams to facilitate real-time event ingestion and transformation. By configuring different metrics and partition keys, users can manipulate the flow of data as it enters the system, allowing for advanced processing before the data reaches its final destination.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration