Kernel and Apache Hudi Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Kernel plugin collects various statistics about the Linux kernel, including context switches, page usage, and entropy availability.
Writes metrics to Parquet files via Telegraf’s Parquet output plugin, preparing them for ingestion into Apache Hudi’s lakehouse architecture.
Integration details
Kernel
The Kernel plugin is designed exclusively for Linux systems and gathers essential kernel statistics that are not covered by other plugins. It primarily focuses on the metrics available in /proc/stat
, as well as the entropy available from /proc/sys/kernel/random/entropy_avail
. Additional functionalities include the capture of Kernel Samepage Merging (KSM) data and Pressure Stall Information (PSI), requiring Linux kernel version 4.20 or later. This plugin provides a comprehensive look into system behaviors, enabling better understanding and optimization of resource management and usage. The metrics it collects are critical for monitoring system health and performance.
Apache Hudi
This configuration leverages Telegraf’s Parquet plugin to serialize metrics into columnar Parquet files suitable for downstream ingestion by Apache Hudi. The plugin writes metrics grouped by metric name into files in a specified directory, buffering writes for efficiency and optionally rotating files on timers. It considers schema compatibility—metrics with incompatible schemas are dropped—ensuring consistency. Apache Hudi can then consume these Parquet files via tools like DeltaStreamer or Spark jobs, enabling transactional ingestion, time-travel queries, and upserts on your time series data.
Configuration
Kernel
[[inputs.kernel]]
## Additional gather options
## Possible options include:
## * ksm - kernel same-page merging
## * psi - pressure stall information
# collect = []
Apache Hudi
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
directory = "/var/lib/telegraf/hudi_metrics"
## File rotation interval (default is no rotation)
# rotation_interval = "1h"
## Buffer size before writing (default is 1000 metrics)
# buffer_size = 1000
## Optional: compression codec (snappy, gzip, etc.)
# compression_codec = "snappy"
## When grouping metrics, each metric name goes to its own file
## If a metric’s schema doesn’t match the existing schema, it will be dropped
Input and output integration examples
Kernel
-
Memory Optimization through KSM: Utilize the KSM capabilities of this plugin to monitor memory usage patterns in your applications and dynamically adjust the memory allocation strategy based on shared page usage metrics. By analyzing the data collected, you can identify opportunities for consolidating memory and optimizing performance without manual intervention.
-
Real-time System Health Monitoring: Integrate the metrics collected by the Kernel plugin into a real-time dashboard that visualizes key kernel statistics including context switches, interrupts, and entropy availability. This setup allows system administrators to proactively respond to performance issues before they escalate into critical failures, ensuring smooth operation of Linux servers.
-
Enhanced Anomaly Detection: Combine the data from this plugin with machine learning models to predict and detect anomalies in kernel behavior. By continuously monitoring metrics like process forking rates and entropy levels, you can implement an adaptive alerting system that triggers on performance anomalies, allowing for quick responses to potential issues.
-
Resource Usage Patterns Analysis: Use the Pressure Stall Information collected by the plugin to analyze resource usage patterns over time and identify potential bottlenecks under load conditions. By adjusting application performance based on the PSI metrics, you can improve overall resource management and maintain service reliability under varying workloads.
Apache Hudi
-
Transactional Lakehouse Metrics: Buffer and write Web service metrics as Parquet files for DeltaStreamer to ingest into Hudi, enabling upserts, ACID compliance, and time-travel on historical performance data.
-
Edge Device Batch Analytics: Telegraf running on IoT gateways writes metrics to Parquet locally, where periodic Spark jobs ingest them into Hudi for long-term analytics and traceability.
-
Schema-Enforced Abnormal Metric Handling: Use Parquet plugin’s strict schema-dropping behavior to prevent malformed or unexpected metric changes. Hudi ingestion then guarantees consistent schema and data quality in downstream datasets.
-
Data Platform Integration: Store Telegraf metrics as Parquet files in an S3/ADLS landing zone. Hudi’s Spark-based ingestion pipeline then loads them into a unified, queryable lakehouse with business events and logs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration