Kernel and Graylog Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the Kernal plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kernel plugin collects various statistics about the Linux kernel, including context switches, page usage, and entropy availability.

The Graylog plugin allows you to send Telegraf metrics to a Graylog server, utilizing the GELF format for structured logging.

Integration details

Kernel

The Kernel plugin is designed exclusively for Linux systems and gathers essential kernel statistics that are not covered by other plugins. It primarily focuses on the metrics available in /proc/stat, as well as the entropy available from /proc/sys/kernel/random/entropy_avail. Additional functionalities include the capture of Kernel Samepage Merging (KSM) data and Pressure Stall Information (PSI), requiring Linux kernel version 4.20 or later. This plugin provides a comprehensive look into system behaviors, enabling better understanding and optimization of resource management and usage. The metrics it collects are critical for monitoring system health and performance.

Graylog

The Graylog plugin is designed for sending metrics to a Graylog instance using the GELF (Graylog Extended Log Format) format. GELF helps standardize the logging data, making it easier for systems to send and analyze logs. The plugin adheres to the GELF specification, which lays out requirements for specific fields within the payload. Notably, the timestamp must be in UNIX format, and if present, the plugin sends the timestamp as-is to Graylog without alterations. If omitted, it automatically generates a timestamp. Additionally, any extra fields not explicitly defined by the spec will be prefixed with an underscore, helping to keep the data organized and compliant with GELF’s requirements. This capability is particularly valuable for users monitoring applications and infrastructure in real-time, as it allows for seamless integration and improved visibility across multiple systems.

Configuration

Kernel

[[inputs.kernel]]
  ## Additional gather options
  ## Possible options include:
  ## * ksm - kernel same-page merging
  ## * psi - pressure stall information
  # collect = []

Graylog

[[outputs.graylog]]
  ## Endpoints for your graylog instances.
  servers = ["udp://127.0.0.1:12201"]

  ## Connection timeout.
  # timeout = "5s"

  ## The field to use as the GELF short_message, if unset the static string
  ## "telegraf" will be used.
  ##   example: short_message_field = "message"
  # short_message_field = ""

  ## According to GELF payload specification, additional fields names must be prefixed
  ## with an underscore. Previous versions did not prefix custom field 'name' with underscore.
  ## Set to true for backward compatibility.
  # name_field_no_prefix = false

  ## Connection retry options
  ## Attempt to connect to the endpoints if the initial connection fails.
  ## If 'false', Telegraf will give up after 3 connection attempt and will
  ## exit with an error. If set to 'true', the plugin will retry to connect
  ## to the unconnected endpoints infinitely.
  # connection_retry = false
  ## Time to wait between connection retry attempts.
  # connection_retry_wait_time = "15s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Input and output integration examples

Kernel

  1. Memory Optimization through KSM: Utilize the KSM capabilities of this plugin to monitor memory usage patterns in your applications and dynamically adjust the memory allocation strategy based on shared page usage metrics. By analyzing the data collected, you can identify opportunities for consolidating memory and optimizing performance without manual intervention.

  2. Real-time System Health Monitoring: Integrate the metrics collected by the Kernel plugin into a real-time dashboard that visualizes key kernel statistics including context switches, interrupts, and entropy availability. This setup allows system administrators to proactively respond to performance issues before they escalate into critical failures, ensuring smooth operation of Linux servers.

  3. Enhanced Anomaly Detection: Combine the data from this plugin with machine learning models to predict and detect anomalies in kernel behavior. By continuously monitoring metrics like process forking rates and entropy levels, you can implement an adaptive alerting system that triggers on performance anomalies, allowing for quick responses to potential issues.

  4. Resource Usage Patterns Analysis: Use the Pressure Stall Information collected by the plugin to analyze resource usage patterns over time and identify potential bottlenecks under load conditions. By adjusting application performance based on the PSI metrics, you can improve overall resource management and maintain service reliability under varying workloads.

Graylog

  1. Enhanced Log Management for Cloud Applications: Use the Graylog Telegraf plugin to aggregate logs from cloud-deployed applications across multiple servers. By integrating this plugin, teams can centralize logging data, making it easier to troubleshoot issues, monitor application performance, and maintain compliance with logging standards.

  2. Real-Time Security Monitoring: Leverage the Graylog plugin to collect and send security-related metrics and logs to a Graylog server for real-time analysis. This allows security teams to quickly identify anomalies, track potential breaches, and respond to incidents promptly by correlating logs from various sources within the infrastructure.

  3. Dynamic Alerting and Notification System: Implement the Graylog plugin to enhance alerting mechanisms in your infrastructure. By sending metrics to Graylog, teams can set up dynamic alerts based on log patterns or unexpected behavior, enabling proactive monitoring and rapid incident response strategies.

  4. Cross-Platform Log Consolidation: Use the Graylog plugin to facilitate cross-platform log consolidation across diverse environments such as on-premises, hybrid, and cloud. By standardizing logging in the GELF format, organizations can ensure consistent monitoring and troubleshooting practices, regardless of where their services are hosted.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration