Kernel and VictoriaMetrics Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the Kernal plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kernel plugin collects various statistics about the Linux kernel, including context switches, page usage, and entropy availability.

This plugin enables Telegraf to efficiently write metrics directly into VictoriaMetrics using the InfluxDB line protocol, leveraging the performance and scalability features of VictoriaMetrics for large-scale time-series data.

Integration details

Kernel

The Kernel plugin is designed exclusively for Linux systems and gathers essential kernel statistics that are not covered by other plugins. It primarily focuses on the metrics available in /proc/stat, as well as the entropy available from /proc/sys/kernel/random/entropy_avail. Additional functionalities include the capture of Kernel Samepage Merging (KSM) data and Pressure Stall Information (PSI), requiring Linux kernel version 4.20 or later. This plugin provides a comprehensive look into system behaviors, enabling better understanding and optimization of resource management and usage. The metrics it collects are critical for monitoring system health and performance.

VictoriaMetrics

VictoriaMetrics supports direct ingestion of metrics in the InfluxDB line protocol, making this plugin ideal for efficient real-time metric storage and retrieval. The integration combines Telegraf’s extensive metric collection capabilities with VictoriaMetrics’ optimized storage and querying features, including compression, fast ingestion rates, and efficient disk utilization. Ideal for cloud-native and large-scale monitoring scenarios, this plugin offers simplicity, robust performance, and high reliability, enabling advanced operational insights and long-term storage solutions for large volumes of metrics.

Configuration

Kernel

[[inputs.kernel]]
  ## Additional gather options
  ## Possible options include:
  ## * ksm - kernel same-page merging
  ## * psi - pressure stall information
  # collect = []

VictoriaMetrics

[[outputs.influxdb]]
  ## URL of the VictoriaMetrics write endpoint
  urls = ["http://localhost:8428"]

  ## VictoriaMetrics accepts InfluxDB line protocol directly
  database = "db_name"

  ## Optional authentication
  # username = "username"
  # password = "password"
  # skip_database_creation = true
  # exclude_retention_policy_tag = true
  # content_encoding = "gzip"

  ## Timeout for HTTP requests
  timeout = "5s"

  ## Optional TLS configuration
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

Input and output integration examples

Kernel

  1. Memory Optimization through KSM: Utilize the KSM capabilities of this plugin to monitor memory usage patterns in your applications and dynamically adjust the memory allocation strategy based on shared page usage metrics. By analyzing the data collected, you can identify opportunities for consolidating memory and optimizing performance without manual intervention.

  2. Real-time System Health Monitoring: Integrate the metrics collected by the Kernel plugin into a real-time dashboard that visualizes key kernel statistics including context switches, interrupts, and entropy availability. This setup allows system administrators to proactively respond to performance issues before they escalate into critical failures, ensuring smooth operation of Linux servers.

  3. Enhanced Anomaly Detection: Combine the data from this plugin with machine learning models to predict and detect anomalies in kernel behavior. By continuously monitoring metrics like process forking rates and entropy levels, you can implement an adaptive alerting system that triggers on performance anomalies, allowing for quick responses to potential issues.

  4. Resource Usage Patterns Analysis: Use the Pressure Stall Information collected by the plugin to analyze resource usage patterns over time and identify potential bottlenecks under load conditions. By adjusting application performance based on the PSI metrics, you can improve overall resource management and maintain service reliability under varying workloads.

VictoriaMetrics

  1. Cloud-Native Application Monitoring: Stream metrics from microservices deployed on Kubernetes directly into VictoriaMetrics. By centralizing metrics, organizations can perform real-time monitoring, rapid anomaly detection, and seamless scalability across dynamically evolving cloud environments.

  2. Scalable IoT Data Management: Use the plugin to ingest sensor data from IoT deployments into VictoriaMetrics. This approach facilitates real-time analytics, predictive maintenance, and efficient management of massive volumes of sensor data with minimal storage overhead.

  3. Financial Systems Performance Tracking: Leverage VictoriaMetrics via this plugin to store and analyze metrics from financial systems, capturing latency, transaction volume, and error rates. Organizations can rapidly identify and resolve performance bottlenecks, ensuring high availability and regulatory compliance.

  4. Cross-Environment Performance Dashboards: Integrate metrics from diverse infrastructure components—such as cloud instances, containers, and physical servers into VictoriaMetrics. Using visualization tools, teams can build comprehensive dashboards for end-to-end performance visibility, proactive troubleshooting, and infrastructure optimization.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration