Kibana and Grafana Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Kibana plugin enables users to obtain status metrics from Kibana, a data visualization tool for Elasticsearch. By connecting to the Kibana API, this plugin captures various performance indicators and the health status of the Kibana service.
This plugin enables Telegraf to stream metrics directly to Grafana dashboards in real-time, leveraging Grafana Live for instantaneous data visualization and operational insights.
Integration details
Kibana
The Kibana input plugin is designed to query the Kibana API to gather service status information. This plugin allows users to monitor their Kibana instances effectively by pulling metrics related to its health, performance, and operational metrics. By querying the Kibana API, this plugin provides insights into key parameters such as the current health status (green, yellow, red), uptime, heap memory usage, and request performance metrics. This information is crucial for administrators and operational teams looking to maintain optimal system performance and quickly address any issues that may arise. The configuration settings allow for flexible integration with other components in a microservices architecture, facilitating comprehensive monitoring solutions aligned with organizational needs, making it an essential tool for those leveraging the Elastic Stack in their infrastructure.
Grafana
Telegraf can be used to send real-time data to Grafana using the Websocket output plugin. Metrics collected by Telegraf are instantly pushed to Grafana dashboards, enabling real-time visualization and analysis. This plugin is ideal for use cases where low latency, live data visualization is essential, such as operational monitoring, real-time analytics, and immediate incident response scenarios. It supports authentication headers, customizable data serialization formats (like JSON), and secure communication via TLS, offering flexibility and ease of integration in dynamic, interactive dashboard environments.
Configuration
Kibana
[[inputs.kibana]]
## Specify a list of one or more Kibana servers
servers = ["http://localhost:5601"]
## Timeout for HTTP requests
timeout = "5s"
## HTTP Basic Auth credentials
# username = "username"
# password = "pa$$word"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## If 'use_system_proxy' is set to true, Telegraf will check env vars such as
## HTTP_PROXY, HTTPS_PROXY, and NO_PROXY (or their lowercase counterparts).
## If 'use_system_proxy' is set to false (default) and 'http_proxy_url' is
## provided, Telegraf will use the specified URL as HTTP proxy.
# use_system_proxy = false
# http_proxy_url = "http://localhost:8888"
Grafana
[[outputs.websocket]]
## Grafana Live WebSocket endpoint
url = "ws://localhost:3000/api/live/push/custom_id"
## Optional headers for authentication
# [outputs.websocket.headers]
# Authorization = "Bearer YOUR_GRAFANA_API_TOKEN"
## Data format to send metrics
data_format = "influx"
## Timeouts (make sure read_timeout is larger than server ping interval or set to zero).
# connect_timeout = "30s"
# write_timeout = "30s"
# read_timeout = "30s"
## Optionally turn on using text data frames (binary by default).
# use_text_frames = false
## TLS configuration
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Kibana
-
Kibana Health Monitoring: Implement a dedicated dashboard to periodically poll the metrics from Kibana. This setup allows operations teams to have a real-time view of their Kibana instances’ health and metrics, enabling proactive performance management and immediate response capabilities in case of service degradation or failure.
-
Automated Alerting System: Integrate the metrics gathered from the Kibana plugin with an alerting system using tools like Prometheus or PagerDuty. By setting thresholds for key metrics (e.g., response time or heap usage), this integration can automatically notify the relevant personnel of performance issues, thereby reducing downtime and improving the response time for operational issues.
-
Resource Optimization Strategy: Use the memory usage and response time metrics collected by this plugin to formulate strategies for optimizing resource allocation in Kubernetes or other orchestration platforms. By analyzing trends over time, teams can adjust resource limits and requests dynamically, ensuring that Kibana instances function efficiently without over-provisioning resources.
Grafana
-
Real-Time Infrastructure Dashboards: Deploy Telegraf to stream server health metrics directly to Grafana dashboards, enabling IT teams to visualize infrastructure performance in real-time. This setup allows immediate detection and response to critical system events.
-
Interactive IoT Monitoring: Integrate IoT device metrics collected by Telegraf and push live data into Grafana, creating dynamic and interactive dashboards for monitoring smart city projects or manufacturing processes. This real-time visibility significantly enhances responsiveness and operational efficiency.
-
Instantaneous Application Performance Analysis: Stream application metrics in real-time from production environments into Grafana dashboards, enabling development teams to rapidly detect and diagnose performance bottlenecks or anomalies during deployments, minimizing downtime and improving reliability.
-
Live Event Analytics: Utilize Telegraf to capture and stream real-time audience or system metrics during major live events directly into Grafana dashboards. Event organizers can dynamically monitor and react to changing conditions or trends, significantly enhancing audience engagement and operational decision-making.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration