Kibana and OpenObserve Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Kibana and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kibana plugin enables users to obtain status metrics from Kibana, a data visualization tool for Elasticsearch. By connecting to the Kibana API, this plugin captures various performance indicators and the health status of the Kibana service.

This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.

Integration details

Kibana

The Kibana input plugin is designed to query the Kibana API to gather service status information. This plugin allows users to monitor their Kibana instances effectively by pulling metrics related to its health, performance, and operational metrics. By querying the Kibana API, this plugin provides insights into key parameters such as the current health status (green, yellow, red), uptime, heap memory usage, and request performance metrics. This information is crucial for administrators and operational teams looking to maintain optimal system performance and quickly address any issues that may arise. The configuration settings allow for flexible integration with other components in a microservices architecture, facilitating comprehensive monitoring solutions aligned with organizational needs, making it an essential tool for those leveraging the Elastic Stack in their infrastructure.

OpenObserve

OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.

Configuration

Kibana

[[inputs.kibana]]
  ## Specify a list of one or more Kibana servers
  servers = ["http://localhost:5601"]

  ## Timeout for HTTP requests
  timeout = "5s"

  ## HTTP Basic Auth credentials
  # username = "username"
  # password = "pa$$word"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false
 
  ## If 'use_system_proxy' is set to true, Telegraf will check env vars such as
  ## HTTP_PROXY, HTTPS_PROXY, and NO_PROXY (or their lowercase counterparts).
  ## If 'use_system_proxy' is set to false (default) and 'http_proxy_url' is
  ## provided, Telegraf will use the specified URL as HTTP proxy.
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"

OpenObserve

[[outputs.http]]
  ## OpenObserve JSON metrics ingestion endpoint
  url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"

  ## Use POST to push batches
  method = "POST"

  ## Basic auth header (base64 encoded "username:password")
  headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }

  ## Timeout for HTTP requests
  timeout = "10s"

  ## Override Content-Type to match OpenObserve expectation
  content_type = "application/json"

  ## Force Telegraf to batch and serialize metrics as JSON
  data_format = "json"

  ## JSON serializer specific options
  json_timestamp_units = "1ms"

  ## Uncomment to restrict batch size
  # batch_size = 5000

Input and output integration examples

Kibana

  1. Kibana Health Monitoring: Implement a dedicated dashboard to periodically poll the metrics from Kibana. This setup allows operations teams to have a real-time view of their Kibana instances’ health and metrics, enabling proactive performance management and immediate response capabilities in case of service degradation or failure.

  2. Automated Alerting System: Integrate the metrics gathered from the Kibana plugin with an alerting system using tools like Prometheus or PagerDuty. By setting thresholds for key metrics (e.g., response time or heap usage), this integration can automatically notify the relevant personnel of performance issues, thereby reducing downtime and improving the response time for operational issues.

  3. Resource Optimization Strategy: Use the memory usage and response time metrics collected by this plugin to formulate strategies for optimizing resource allocation in Kubernetes or other orchestration platforms. By analyzing trends over time, teams can adjust resource limits and requests dynamically, ensuring that Kibana instances function efficiently without over-provisioning resources.

OpenObserve

  1. Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.

  2. Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.

  3. Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with tenant_id; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits.

  4. Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration