Kibana and Splunk Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Kibana and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kibana plugin enables users to obtain status metrics from Kibana, a data visualization tool for Elasticsearch. By connecting to the Kibana API, this plugin captures various performance indicators and the health status of the Kibana service.

This output plugin facilitates direct streaming of Telegraf collected metrics into Splunk via the HTTP Event Collector, enabling easy integration with Splunk’s powerful analytics platform.

Integration details

Kibana

The Kibana input plugin is designed to query the Kibana API to gather service status information. This plugin allows users to monitor their Kibana instances effectively by pulling metrics related to its health, performance, and operational metrics. By querying the Kibana API, this plugin provides insights into key parameters such as the current health status (green, yellow, red), uptime, heap memory usage, and request performance metrics. This information is crucial for administrators and operational teams looking to maintain optimal system performance and quickly address any issues that may arise. The configuration settings allow for flexible integration with other components in a microservices architecture, facilitating comprehensive monitoring solutions aligned with organizational needs, making it an essential tool for those leveraging the Elastic Stack in their infrastructure.

Splunk

Use Telegraf to easily collect and aggregate metrics from many different sources and send them to Splunk. Utilizing the HTTP output plugin combined with the specialized Splunk metrics serializer, this configuration ensures efficient data ingestion into Splunk’s metrics indexes. The HEC is an advanced mechanism provided by Splunk designed to reliably collect data at scale via HTTP or HTTPS, providing critical capabilities for security, monitoring, and analytics workloads. Telegraf’s integration with Splunk HEC streamlines operations by leveraging standard HTTP protocols, built-in authentication, and structured data serialization, optimizing metrics ingestion and enabling immediate actionable insights.

Configuration

Kibana

[[inputs.kibana]]
  ## Specify a list of one or more Kibana servers
  servers = ["http://localhost:5601"]

  ## Timeout for HTTP requests
  timeout = "5s"

  ## HTTP Basic Auth credentials
  # username = "username"
  # password = "pa$$word"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false
 
  ## If 'use_system_proxy' is set to true, Telegraf will check env vars such as
  ## HTTP_PROXY, HTTPS_PROXY, and NO_PROXY (or their lowercase counterparts).
  ## If 'use_system_proxy' is set to false (default) and 'http_proxy_url' is
  ## provided, Telegraf will use the specified URL as HTTP proxy.
  # use_system_proxy = false
  # http_proxy_url = "http://localhost:8888"

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

Input and output integration examples

Kibana

  1. Kibana Health Monitoring: Implement a dedicated dashboard to periodically poll the metrics from Kibana. This setup allows operations teams to have a real-time view of their Kibana instances’ health and metrics, enabling proactive performance management and immediate response capabilities in case of service degradation or failure.

  2. Automated Alerting System: Integrate the metrics gathered from the Kibana plugin with an alerting system using tools like Prometheus or PagerDuty. By setting thresholds for key metrics (e.g., response time or heap usage), this integration can automatically notify the relevant personnel of performance issues, thereby reducing downtime and improving the response time for operational issues.

  3. Resource Optimization Strategy: Use the memory usage and response time metrics collected by this plugin to formulate strategies for optimizing resource allocation in Kubernetes or other orchestration platforms. By analyzing trends over time, teams can adjust resource limits and requests dynamically, ensuring that Kibana instances function efficiently without over-provisioning resources.

Splunk

  1. Real-Time Security Analytics: Utilize this plugin to stream security-related metrics from various applications into Splunk in real-time. Organizations can detect threats instantly by correlating data streams across systems, significantly reducing detection and response times.

  2. Multi-Cloud Infrastructure Monitoring: Integrate Telegraf to consolidate metrics from multi-cloud environments directly into Splunk, enabling comprehensive visibility and operational intelligence. This unified monitoring allows teams to detect performance issues quickly and streamline cloud resource management.

  3. Dynamic Capacity Planning: Deploy the plugin to continuously push resource metrics from container orchestration platforms (like Kubernetes) into Splunk. Leveraging Splunk’s analytics capabilities, teams can automate predictive scaling and resource allocation, avoiding resource bottlenecks and minimizing costs.

  4. Automated Incident Response Workflows: Combine this plugin with Splunk’s alerting system to create automated incident response workflows. Metrics collected by Telegraf trigger real-time alerts and automated remediation scripts, ensuring rapid resolution and maintaining high system availability.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration