Kinesis and Azure Application Insights Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Kinesis and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Kinesis plugin enables you to read from Kinesis data streams, supporting various data formats and configurations.

This plugin writes Telegraf metrics to Azure Application Insights, enabling powerful monitoring and diagnostics.

Integration details

Kinesis

The Kinesis Telegraf plugin is designed to read from Amazon Kinesis data streams, enabling users to gather metrics in real-time. As a service input plugin, it operates by listening for incoming data rather than polling at regular intervals. The configuration specifies various options including the AWS region, stream name, authentication credentials, and data formats. It supports tracking of undelivered messages to prevent data loss, and users can utilize DynamoDB for maintaining checkpoints of the last processed records. This plugin is particularly useful for applications requiring reliable and scalable stream processing alongside other monitoring needs.

Azure Application Insights

The Azure Application Insights plugin integrates Telegraf with Azure’s Application Insights service, facilitating the seamless transmission of metrics from various sources to a centralized monitoring platform. This plugin empowers users to harness the capabilities of Azure Application Insights, a powerful application performance management tool, allowing developers and IT operations teams to gain valuable insights into the performance, availability, and usage of their applications. By employing this plugin, users can monitor application telemetry and operational data efficiently, contributing to better diagnostics and improved application performance.

Key features of this plugin include the ability to specify an instrumentation key for the Application Insights resource, configure the endpoint URL for tracking, and enable additional diagnostic logging for a more comprehensive analysis. Furthermore, the plugin provides context tagging capabilities, allowing the addition of specific Application Insights context tags to enhance the contextual information associated with metrics being sent. These features collectively make the Azure Application Insights Output Plugin a vital tool for organizations looking to optimize their monitoring capabilities within Azure.

Configuration

Kinesis


# Configuration for the AWS Kinesis input.
[[inputs.kinesis_consumer]]
  ## Amazon REGION of kinesis endpoint.
  region = "ap-southeast-2"

  ## Amazon Credentials
  ## Credentials are loaded in the following order
  ## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
  ## 2) Assumed credentials via STS if role_arn is specified
  ## 3) explicit credentials from 'access_key' and 'secret_key'
  ## 4) shared profile from 'profile'
  ## 5) environment variables
  ## 6) shared credentials file
  ## 7) EC2 Instance Profile
  # access_key = ""
  # secret_key = ""
  # token = ""
  # role_arn = ""
  # web_identity_token_file = ""
  # role_session_name = ""
  # profile = ""
  # shared_credential_file = ""

  ## Endpoint to make request against, the correct endpoint is automatically
  ## determined and this option should only be set if you wish to override the
  ## default.
  ##   ex: endpoint_url = "http://localhost:8000"
  # endpoint_url = ""

  ## Kinesis StreamName must exist prior to starting telegraf.
  streamname = "StreamName"

  ## Shard iterator type (only 'TRIM_HORIZON' and 'LATEST' currently supported)
  # shard_iterator_type = "TRIM_HORIZON"

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

  ##
  ## The content encoding of the data from kinesis
  ## If you are processing a cloudwatch logs kinesis stream then set this to "gzip"
  ## as AWS compresses cloudwatch log data before it is sent to kinesis (aws
  ## also base64 encodes the zip byte data before pushing to the stream.  The base64 decoding
  ## is done automatically by the golang sdk, as data is read from kinesis)
  ##
  # content_encoding = "identity"

  ## Optional
  ## Configuration for a dynamodb checkpoint
  [inputs.kinesis_consumer.checkpoint_dynamodb]
    ## unique name for this consumer
    app_name = "default"
    table_name = "default"

Azure Application Insights

[[outputs.application_insights]]
  ## Instrumentation key of the Application Insights resource.
  instrumentation_key = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx"

  ## Regions that require endpoint modification https://docs.microsoft.com/en-us/azure/azure-monitor/app/custom-endpoints
  # endpoint_url = "https://dc.services.visualstudio.com/v2/track"

  ## Timeout for closing (default: 5s).
  # timeout = "5s"

  ## Enable additional diagnostic logging.
  # enable_diagnostic_logging = false

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of
  ## the table

  ## Context Tag Sources add Application Insights context tags to a tag value.
  ##
  ## For list of allowed context tag keys see:
  ## https://github.com/microsoft/ApplicationInsights-Go/blob/master/appinsights/contracts/contexttagkeys.go
  # [outputs.application_insights.context_tag_sources]
  #   "ai.cloud.role" = "kubernetes_container_name"
  #   "ai.cloud.roleInstance" = "kubernetes_pod_name"

Input and output integration examples

Kinesis

  1. Real-Time Data Processing with Kinesis: This use case involves integrating the Kinesis plugin with a monitoring dashboard to analyze incoming data metrics in real-time. For instance, an application could consume logs from multiple services and present them visually, allowing operations teams to quickly identify trends and react to anomalies as they occur.

  2. Serverless Log Aggregation: Utilize this plugin in a serverless architecture where Kinesis streams aggregate logs from various microservices. The plugin can create metrics that help detect issues in the system, automating alerting processes through third-party integrations, enabling teams to minimize downtime and improve reliability.

  3. Dynamic Scaling Based on Stream Metrics: Implement a solution where stream metrics consumed by the Kinesis plugin could be used to adjust resources dynamically. For example, if the number of records processed spikes, corresponding scale-up actions could be triggered to handle the increased load, ensuring optimal resource allocation and performance.

  4. Data Pipeline to S3 with Checkpointing: Create a robust data pipeline where Kinesis stream data is processed through the Telegraf Kinesis plugin, with checkpoints stored in DynamoDB. This approach can ensure data consistency and reliability, as it manages the state of processed data, enabling seamless integration with downstream data lakes or storage solutions.

Azure Application Insights

  1. Application Performance Monitoring: Utilize the Azure Application Insights plugin to continuously monitor the performance of your web applications or microservices. By sending Telegraf metrics directly to Application Insights, teams can visualize real-time application performance data, enabling proactive tuning and optimization of application resources. This setup not only enhances the reliability of applications but also ensures user satisfaction through consistent performance monitoring.

  2. Integrated Logging and Telemetry: Combine this plugin with centralized logging solutions to provide a comprehensive observability stack. By sending telecom data to Azure Application Insights, teams can correlate performance metrics with log data and gain deeper insights into application behavior, allowing for more efficient troubleshooting and root cause analysis.

  3. Contextual Monitoring of Cloud Resources: Use the context tagging feature to enrich your application metrics with specific contextual information related to your cloud environment. This enhanced context can be invaluable for understanding the performance of cloud-native applications, enabling better scaling decisions and resource management based on real usage patterns.

  4. Real-time Alerts Setup: Configure Application Insights to trigger alerts based on specific metrics received via this plugin. This allows teams to be notified of performance degradation or anomalies in real-time, enabling immediate action to mitigate issues and maintain high availability of applications.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration