KNX and M3DB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the KNX plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The KNX plugin listens for messages from the KNX home-automation bus via a KNX-IP interface, allowing for real-time data integration from KNX-enabled devices.

This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.

Integration details

KNX

The KNX plugin allows for the listening to messages transmitted over the KNX home-automation bus. It establishes a connection with the KNX bus through a KNX-IP interface, making it compatible with various message datapoint types that KNX employs. The plugin supports service input configuration, wherein it remains active to listen for relevant metrics or events rather than relying solely on scheduled intervals. This inherent characteristic enables real-time data capture from the KNX systems, enhancing automation and integration possibilities for building management and smart home applications. Additionally, this plugin is designed to handle multiple measurements from the KNX data, allowing for a flexible categorization of metrics based on the derived datapoint types, thus broadening the scope of data integration in smart environments.

M3DB

This configuration uses Telegraf’s HTTP output plugin with prometheusremotewrite format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.

Configuration

KNX

[[inputs.knx_listener]]
  ## Type of KNX-IP interface.
  ## Can be either "tunnel_udp", "tunnel_tcp", "tunnel" (alias for tunnel_udp) or "router".
  # service_type = "tunnel"

  ## Address of the KNX-IP interface.
  service_address = "localhost:3671"

  ## Measurement definition(s)
  # [[inputs.knx_listener.measurement]]
  #   ## Name of the measurement
  #   name = "temperature"
  #   ## Datapoint-Type (DPT) of the KNX messages
  #   dpt = "9.001"
  #   ## Use the string representation instead of the numerical value for the
  #   ## datapoint-type and the addresses below
  #   # as_string = false
  #   ## List of Group-Addresses (GAs) assigned to the measurement
  #   addresses = ["5/5/1"]

  # [[inputs.knx_listener.measurement]]
  #   name = "illumination"
  #   dpt = "9.004"
  #   addresses = ["5/5/3"]

M3DB

# Configuration for sending metrics to M3
[outputs.http]
  ## URL is the address to send metrics to
  url = "https://M3_HOST:M3_PORT/api/v1/prom/remote/write"

  ## HTTP Basic Auth credentials
  username = "admin"
  password = "password"

  ## Data format to output.
  data_format = "prometheusremotewrite"

  ## Outgoing HTTP headers
  [outputs.http.headers]
    Content-Type = "application/x-protobuf"
    Content-Encoding = "snappy"
    X-Prometheus-Remote-Write-Version = "0.1.0"

Input and output integration examples

KNX

  1. Smart Home Energy Monitoring: Utilize the KNX plugin to monitor energy consumption across various devices in a smart home setup. By configuring measurements for different appliances, users can gather real-time data on power usage, enabling them to optimize energy consumption and reduce costs. This setup can also integrate with visualization tools to provide insights into energy trends and usage patterns.

  2. Automated Lighting Control System: Leverage this plugin to listen for lighting status updates from KNX sensors in a building. By capturing measurements related to illumination, users can develop an automated lighting control system that adjusts the brightness based on the time of day or occupancy, enhancing comfort and energy efficiency.

  3. HVAC Performance Tracking: Implement the KNX plugin to track temperature and ventilation data across different zones in a building. By monitoring these metrics, facilities managers can identify trends in HVAC performance, optimize climate control strategies, and proactively address maintenance needs to ensure consistent environmental quality.

  4. Integrated Security Solutions: Use the plugin to capture data from KNX security sensors, such as door/window open/close statuses. This information can be routed into a central monitoring system, providing real-time alerts and enabling automated responses, such as locking doors or activating alarms, thus enhancing the building’s security posture.

M3DB

  1. Large-Scale Cloud Infrastructure Monitoring: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.

  2. Legacy System Metrics Ingestion: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.

  3. Centralized App Telemetry Aggregation: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g., exec, http, jolokia) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources.

  4. Hybrid Cloud Observability: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration