LDAP and Apache Hudi Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider LDAP and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The LDAP plugin collects monitoring metrics from LDAP servers, including OpenLDAP and 389 Directory Server. This plugin is essential for tracking the performance and health of LDAP services, enabling administrators to gain insights into their directory operations.

Writes metrics to Parquet files via Telegraf’s Parquet output plugin, preparing them for ingestion into Apache Hudi’s lakehouse architecture.

Integration details

LDAP

This plugin gathers metrics from LDAP servers’ monitoring backend, specifically from the cn=Monitor entries. It supports two prominent LDAP implementations: OpenLDAP and 389 Directory Server (389ds). With a focus on collecting various operational metrics, the LDAP plugin enables administrators to monitor performance, connection status, and server health in real-time, which is vital for maintaining robust directory services. By allowing customizable connection parameters and security configurations, such as TLS support, the plugin ensures compliance with best practices for security and performance. Metrics gathered can be instrumental in identifying trends, optimizing server configurations, and enforcing service-level agreements with stakeholders.

Apache Hudi

This configuration leverages Telegraf’s Parquet plugin to serialize metrics into columnar Parquet files suitable for downstream ingestion by Apache Hudi. The plugin writes metrics grouped by metric name into files in a specified directory, buffering writes for efficiency and optionally rotating files on timers. It considers schema compatibility—metrics with incompatible schemas are dropped—ensuring consistency. Apache Hudi can then consume these Parquet files via tools like DeltaStreamer or Spark jobs, enabling transactional ingestion, time-travel queries, and upserts on your time series data.

Configuration

LDAP

[[inputs.ldap]]
  ## Server to monitor
  ## The scheme determines the mode to use for connection with
  ##    ldap://...      -- unencrypted (non-TLS) connection
  ##    ldaps://...     -- TLS connection
  ##    starttls://...  --  StartTLS connection
  ## If no port is given, the default ports, 389 for ldap and starttls and
  ## 636 for ldaps, are used.
  server = "ldap://localhost"

  ## Server dialect, can be "openldap" or "389ds"
  # dialect = "openldap"

  # DN and password to bind with
  ## If bind_dn is empty an anonymous bind is performed.
  bind_dn = ""
  bind_password = ""

  ## Reverse the field names constructed from the monitoring DN
  # reverse_field_names = false

  ## Optional TLS Config
  ## Set to true/false to enforce TLS being enabled/disabled. If not set,
  ## enable TLS only if any of the other options are specified.
  # tls_enable =
  ## Trusted root certificates for server
  # tls_ca = "/path/to/cafile"
  ## Used for TLS client certificate authentication
  # tls_cert = "/path/to/certfile"
  ## Used for TLS client certificate authentication
  # tls_key = "/path/to/keyfile"
  ## Password for the key file if it is encrypted
  # tls_key_pwd = ""
  ## Send the specified TLS server name via SNI
  # tls_server_name = "kubernetes.example.com"
  ## Minimal TLS version to accept by the client
  # tls_min_version = "TLS12"
  ## List of ciphers to accept, by default all secure ciphers will be accepted
  ## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
  ## Use "all", "secure" and "insecure" to add all support ciphers, secure
  ## suites or insecure suites respectively.
  # tls_cipher_suites = ["secure"]
  ## Renegotiation method, "never", "once" or "freely"
  # tls_renegotiation_method = "never"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Apache Hudi

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  directory = "/var/lib/telegraf/hudi_metrics"

  ## File rotation interval (default is no rotation)
  # rotation_interval = "1h"

  ## Buffer size before writing (default is 1000 metrics)
  # buffer_size = 1000

  ## Optional: compression codec (snappy, gzip, etc.)
  # compression_codec = "snappy"

  ## When grouping metrics, each metric name goes to its own file
  ## If a metric’s schema doesn’t match the existing schema, it will be dropped

Input and output integration examples

LDAP

  1. Monitoring Directory Performance: Use the LDAP Telegraf plugin to continuously track and analyze the number of operations completed, initiated connections, and server response times. By visualizing this data over time, administrators can identify performance bottlenecks in directory services, enabling proactive optimization.

  2. Alerting on Security Events: Integrate the plugin with an alerting system to notify administrators when certain metrics, such as bind_security_errors or unauth_binds, exceed predefined thresholds. This setup can enhance security monitoring by providing real-time insights into potential unauthorized access attempts.

  3. Capacity Planning: Leverage the metrics collected by the LDAP plugin to perform capacity planning. Analyze connection trends, maximum threads in use, and operational statistics to forecast future resource needs, ensuring the LDAP server can handle expected peak loads without degrading performance.

  4. Compliance and Auditing: Use the operational metrics obtained via this plugin to assist in compliance audits. By regularly checking metrics like anonymous_binds and security_errors, organizations can ensure that their directory services adhere to security policies and regulatory requirements.

Apache Hudi

  1. Transactional Lakehouse Metrics: Buffer and write Web service metrics as Parquet files for DeltaStreamer to ingest into Hudi, enabling upserts, ACID compliance, and time-travel on historical performance data.

  2. Edge Device Batch Analytics: Telegraf running on IoT gateways writes metrics to Parquet locally, where periodic Spark jobs ingest them into Hudi for long-term analytics and traceability.

  3. Schema-Enforced Abnormal Metric Handling: Use Parquet plugin’s strict schema-dropping behavior to prevent malformed or unexpected metric changes. Hudi ingestion then guarantees consistent schema and data quality in downstream datasets.

  4. Data Platform Integration: Store Telegraf metrics as Parquet files in an S3/ADLS landing zone. Hudi’s Spark-based ingestion pipeline then loads them into a unified, queryable lakehouse with business events and logs.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration