LDAP and Parquet Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The LDAP plugin collects monitoring metrics from LDAP servers, including OpenLDAP and 389 Directory Server. This plugin is essential for tracking the performance and health of LDAP services, enabling administrators to gain insights into their directory operations.
This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.
Integration details
LDAP
This plugin gathers metrics from LDAP servers’ monitoring backend, specifically from the cn=Monitor
entries. It supports two prominent LDAP implementations: OpenLDAP and 389 Directory Server (389ds). With a focus on collecting various operational metrics, the LDAP plugin enables administrators to monitor performance, connection status, and server health in real-time, which is vital for maintaining robust directory services. By allowing customizable connection parameters and security configurations, such as TLS support, the plugin ensures compliance with best practices for security and performance. Metrics gathered can be instrumental in identifying trends, optimizing server configurations, and enforcing service-level agreements with stakeholders.
Parquet
The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.
Configuration
LDAP
[[inputs.ldap]]
## Server to monitor
## The scheme determines the mode to use for connection with
## ldap://... -- unencrypted (non-TLS) connection
## ldaps://... -- TLS connection
## starttls://... -- StartTLS connection
## If no port is given, the default ports, 389 for ldap and starttls and
## 636 for ldaps, are used.
server = "ldap://localhost"
## Server dialect, can be "openldap" or "389ds"
# dialect = "openldap"
# DN and password to bind with
## If bind_dn is empty an anonymous bind is performed.
bind_dn = ""
bind_password = ""
## Reverse the field names constructed from the monitoring DN
# reverse_field_names = false
## Optional TLS Config
## Set to true/false to enforce TLS being enabled/disabled. If not set,
## enable TLS only if any of the other options are specified.
# tls_enable =
## Trusted root certificates for server
# tls_ca = "/path/to/cafile"
## Used for TLS client certificate authentication
# tls_cert = "/path/to/certfile"
## Used for TLS client certificate authentication
# tls_key = "/path/to/keyfile"
## Password for the key file if it is encrypted
# tls_key_pwd = ""
## Send the specified TLS server name via SNI
# tls_server_name = "kubernetes.example.com"
## Minimal TLS version to accept by the client
# tls_min_version = "TLS12"
## List of ciphers to accept, by default all secure ciphers will be accepted
## See https://pkg.go.dev/crypto/tls#pkg-constants for supported values.
## Use "all", "secure" and "insecure" to add all support ciphers, secure
## suites or insecure suites respectively.
# tls_cipher_suites = ["secure"]
## Renegotiation method, "never", "once" or "freely"
# tls_renegotiation_method = "never"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
Parquet
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
# directory = "."
## Files are rotated after the time interval specified. When set to 0 no time
## based rotation is performed.
# rotation_interval = "0h"
## Timestamp field name
## Field name to use to store the timestamp. If set to an empty string, then
## the timestamp is omitted.
# timestamp_field_name = "timestamp"
Input and output integration examples
LDAP
-
Monitoring Directory Performance: Use the LDAP Telegraf plugin to continuously track and analyze the number of operations completed, initiated connections, and server response times. By visualizing this data over time, administrators can identify performance bottlenecks in directory services, enabling proactive optimization.
-
Alerting on Security Events: Integrate the plugin with an alerting system to notify administrators when certain metrics, such as
bind_security_errors
orunauth_binds
, exceed predefined thresholds. This setup can enhance security monitoring by providing real-time insights into potential unauthorized access attempts. -
Capacity Planning: Leverage the metrics collected by the LDAP plugin to perform capacity planning. Analyze connection trends, maximum threads in use, and operational statistics to forecast future resource needs, ensuring the LDAP server can handle expected peak loads without degrading performance.
-
Compliance and Auditing: Use the operational metrics obtained via this plugin to assist in compliance audits. By regularly checking metrics like
anonymous_binds
andsecurity_errors
, organizations can ensure that their directory services adhere to security policies and regulatory requirements.
Parquet
-
Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.
-
Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.
-
Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.
-
Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration