MavLink and GroundWork Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the MavLink plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin collects metrics from MavLink-compatible flight controllers like ArduPilot and PX4, enabling live data ingestion from unmanned systems such as drones and boats.

This plugin writes to a GroundWork Monitor instance, allowing for effective metrics management and monitoring in a centralized manner.

Integration details

MavLink

The MavLink plugin is designed to gather metrics from MavLink-compatible flight controllers such as ArduPilot and PX4. It provides a mechanism to live ingest flight metrics from various unmanned systems, including drones, planes, and boats. By utilizing the ArduPilot-specific MavLink dialect, the plugin parses a wide range of messages as documented in the MavLink documentation. It enables seamless integration of telemetry data, allowing for detailed monitoring and analysis of flight operations. Users must be cautious, as this plugin may generate a substantial volume of data; thus, filters are available to limit the metrics collected and transmitted to output plugins. Additionally, configuration options allow customization of which messages to receive and how to connect to the flight controller.

GroundWork

The GroundWork plugin enables Telegraf to send metrics to a GroundWork Monitor instance, specifically supporting GW8 and newer versions. This integration allows users to leverage the robust monitoring capabilities of GroundWork, enabling comprehensive oversight of metrics collected from diverse sources. Users can specify various parameters such as the GroundWork instance URL, agent IDs, and authentication credentials, allowing for a tailored fit within their existing monitoring setups. It also supports secret-store secrets to enhance security for sensitive fields like username and password. Tags used within the plugin provide fine-grained control over how metrics are categorized and displayed within the GroundWork interface, allowing for custom configurations that adapt to different monitoring needs. However, users should be aware that string metrics are currently not supported by GroundWork, impacting how they manage their data.

Configuration

MavLink

[[inputs.mavlink]]
  ## Flight controller URL supporting serial port, UDP and TCP connections.
  ## Options are documented at
  ##   https://mavsdk.mavlink.io/v1.4/en/cpp/guide/connections.html.
  ##
  ## Examples:
  ## - Serial port: serial:///dev/ttyACM0:57600
  ## - TCP client:  tcp://192.168.1.12:5760
  ## - UDP client:  udp://192.168.1.12:14550
  ## - TCP server:  tcpserver://:5760
  ## - UDP server:  udpserver://:14550
  # url = "tcp://127.0.0.1:5760"

  ## Filter to specific messages. Only the messages in this list will be parsed.
  ## If blank or unset, all messages will be accepted. Glob syntax is accepted.
  ## Each message in this list should be lowercase camel_case, with "message_"
  ## prefix removed, eg: "global_position_int", "attitude"
  # filter = []

  ## Mavlink system ID for Telegraf. Only used if the mavlink plugin is sending 
  ## messages, eg. when `stream_request_frequency` is 0 (see below.)
  # system_id = 254

  ## Determines whether the plugin sends requests to subscribe to data.
  ## In mavlink, stream rates must be configured before data is received.
  ## This config item sets the rate in Hz, with 0 disabling the request.
  ## 
  ## This frequency should be set to 0 if your software already controls the 
  ## rates using REQUEST_DATA_STREAM or MAV_CMD_SET_MESSAGE_INTERVAL
  ## (See https://mavlink.io/en/mavgen_python/howto_requestmessages.html)
  # stream_request_frequency = 4

GroundWork

[[outputs.groundwork]]
  ## URL of your groundwork instance.
  url = "https://groundwork.example.com"

  ## Agent uuid for GroundWork API Server.
  agent_id = ""

  ## Username and password to access GroundWork API.
  username = ""
  password = ""

  ## Default application type to use in GroundWork client
  # default_app_type = "TELEGRAF"

  ## Default display name for the host with services(metrics).
  # default_host = "telegraf"

  ## Default service state.
  # default_service_state = "SERVICE_OK"

  ## The name of the tag that contains the hostname.
  # resource_tag = "host"

  ## The name of the tag that contains the host group name.
  # group_tag = "group"

Input and output integration examples

MavLink

  1. Real-Time Fleet Monitoring: Utilize the MavLink plugin to create a centralized dashboard for monitoring multiple drones in real-time. By ingesting metrics from various flight controllers, operators can oversee the status, health, and location of all drones, allowing for quick decision-making and enhanced situational awareness. This integration could significantly improve coordination during large-scale operations, like aerial surveys or search and rescue missions.

  2. Automated Anomaly Detection: Leverage MavLink in conjunction with machine learning algorithms to detect anomalies in flight data. By continuously monitoring metrics such as altitude, speed, and battery status, the system can alert operators to deviations from normal behavior, potentially indicating technical malfunctions or safety issues. This proactive approach can enhance safety and reduce the risk of in-flight failures.

  3. Data-Driven Maintenance Scheduling: Integrate the data collected through the MavLink plugin with maintenance management systems to optimize maintenance schedules based on actual flight metrics. Analyzing the collected data can highlight patterns indicating when specific components are likely to fail, thereby enabling predictive maintenance strategies that minimize downtime and repair costs.

  4. Enhanced Research Analytics: For academic and commercial UAV research, MavLink can be used to gather extensive flight data for analysis. By compiling metrics over numerous flights, researchers can uncover insights related to flight patterns, environmental interactions, and the efficiency of different drone models. This can foster advancements in UAV technology and broader applications in autonomous systems.

GroundWork

  1. Centralized Monitoring Dashboard: Use the GroundWork plugin to aggregate metrics from multiple Telegraf instances into a single GroundWork Monitor dashboard. This configuration offers complete visibility into system health across various components, enabling swift identification of performance bottlenecks and improved incident response times.

  2. Service Health Monitoring with Alerts: Configure this plugin to send critical service metrics to GroundWork, establishing a robust alerting system. Metrics such as CPU usage and service statuses can trigger alerts based on threshold values, informing administrators of potential issues before they escalate, thereby enhancing system reliability.

  3. Historical Data Analysis: Leverage the historical metric capabilities of GroundWork using this plugin to conduct trend analysis over time. This application allows organizations to make data-driven decisions based on comprehensive historical performance metrics, which can assist in capacity planning and optimize resource allocation.

  4. Custom Service Tags for Enhanced Monitoring: Extend the functionality of this plugin by utilizing custom tags for different services and hosts. By customizing these tags, users can filter and categorize metrics more effectively within their monitoring framework, leading to tailored monitoring experiences that align specifically with business objectives.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration