MavLink and Parquet Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the MavLink plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin collects metrics from MavLink-compatible flight controllers like ArduPilot and PX4, enabling live data ingestion from unmanned systems such as drones and boats.

This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.

Integration details

MavLink

The MavLink plugin is designed to gather metrics from MavLink-compatible flight controllers such as ArduPilot and PX4. It provides a mechanism to live ingest flight metrics from various unmanned systems, including drones, planes, and boats. By utilizing the ArduPilot-specific MavLink dialect, the plugin parses a wide range of messages as documented in the MavLink documentation. It enables seamless integration of telemetry data, allowing for detailed monitoring and analysis of flight operations. Users must be cautious, as this plugin may generate a substantial volume of data; thus, filters are available to limit the metrics collected and transmitted to output plugins. Additionally, configuration options allow customization of which messages to receive and how to connect to the flight controller.

Parquet

The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.

Configuration

MavLink

[[inputs.mavlink]]
  ## Flight controller URL supporting serial port, UDP and TCP connections.
  ## Options are documented at
  ##   https://mavsdk.mavlink.io/v1.4/en/cpp/guide/connections.html.
  ##
  ## Examples:
  ## - Serial port: serial:///dev/ttyACM0:57600
  ## - TCP client:  tcp://192.168.1.12:5760
  ## - UDP client:  udp://192.168.1.12:14550
  ## - TCP server:  tcpserver://:5760
  ## - UDP server:  udpserver://:14550
  # url = "tcp://127.0.0.1:5760"

  ## Filter to specific messages. Only the messages in this list will be parsed.
  ## If blank or unset, all messages will be accepted. Glob syntax is accepted.
  ## Each message in this list should be lowercase camel_case, with "message_"
  ## prefix removed, eg: "global_position_int", "attitude"
  # filter = []

  ## Mavlink system ID for Telegraf. Only used if the mavlink plugin is sending 
  ## messages, eg. when `stream_request_frequency` is 0 (see below.)
  # system_id = 254

  ## Determines whether the plugin sends requests to subscribe to data.
  ## In mavlink, stream rates must be configured before data is received.
  ## This config item sets the rate in Hz, with 0 disabling the request.
  ## 
  ## This frequency should be set to 0 if your software already controls the 
  ## rates using REQUEST_DATA_STREAM or MAV_CMD_SET_MESSAGE_INTERVAL
  ## (See https://mavlink.io/en/mavgen_python/howto_requestmessages.html)
  # stream_request_frequency = 4

Parquet

[[outputs.parquet]]
  ## Directory to write parquet files in. If a file already exists the output
  ## will attempt to continue using the existing file.
  # directory = "."
  
  ## Files are rotated after the time interval specified. When set to 0 no time
  ## based rotation is performed.
  # rotation_interval = "0h"
  
  ## Timestamp field name
  ## Field name to use to store the timestamp. If set to an empty string, then
  ## the timestamp is omitted.
  # timestamp_field_name = "timestamp"

Input and output integration examples

MavLink

  1. Real-Time Fleet Monitoring: Utilize the MavLink plugin to create a centralized dashboard for monitoring multiple drones in real-time. By ingesting metrics from various flight controllers, operators can oversee the status, health, and location of all drones, allowing for quick decision-making and enhanced situational awareness. This integration could significantly improve coordination during large-scale operations, like aerial surveys or search and rescue missions.

  2. Automated Anomaly Detection: Leverage MavLink in conjunction with machine learning algorithms to detect anomalies in flight data. By continuously monitoring metrics such as altitude, speed, and battery status, the system can alert operators to deviations from normal behavior, potentially indicating technical malfunctions or safety issues. This proactive approach can enhance safety and reduce the risk of in-flight failures.

  3. Data-Driven Maintenance Scheduling: Integrate the data collected through the MavLink plugin with maintenance management systems to optimize maintenance schedules based on actual flight metrics. Analyzing the collected data can highlight patterns indicating when specific components are likely to fail, thereby enabling predictive maintenance strategies that minimize downtime and repair costs.

  4. Enhanced Research Analytics: For academic and commercial UAV research, MavLink can be used to gather extensive flight data for analysis. By compiling metrics over numerous flights, researchers can uncover insights related to flight patterns, environmental interactions, and the efficiency of different drone models. This can foster advancements in UAV technology and broader applications in autonomous systems.

Parquet

  1. Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.

  2. Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.

  3. Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.

  4. Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration