MavLink and AWS Timestream Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
This plugin collects metrics from MavLink-compatible flight controllers like ArduPilot and PX4, enabling live data ingestion from unmanned systems such as drones and boats.
The AWS Timestream Telegraf plugin enables users to send metrics directly to Amazon’s Timestream service, which is designed for time series data management. This plugin offers a variety of configuration options for authentication, data organization, and retention settings.
Integration details
MavLink
The MavLink plugin is designed to gather metrics from MavLink-compatible flight controllers such as ArduPilot and PX4. It provides a mechanism to live ingest flight metrics from various unmanned systems, including drones, planes, and boats. By utilizing the ArduPilot-specific MavLink dialect, the plugin parses a wide range of messages as documented in the MavLink documentation. It enables seamless integration of telemetry data, allowing for detailed monitoring and analysis of flight operations. Users must be cautious, as this plugin may generate a substantial volume of data; thus, filters are available to limit the metrics collected and transmitted to output plugins. Additionally, configuration options allow customization of which messages to receive and how to connect to the flight controller.
AWS Timestream
This plugin is designed to efficiently write metrics to Amazon’s Timestream service, a time series database optimized for IoT and operational applications. With this plugin Telegraf can send data collected from various sources and supports a flexible configuration for authentication, data organization, and retention management. It utilizes a credential chain for authentication, allowing various methods such as web identity, assumed roles, and shared profiles. Users can define how metrics are organized in Timestream—whether to use a single table or multiple tables, alongside control over aspect such as retention periods for both magnetic and memory stores. A key feature is its ability to handle multi-measure records, enabling efficient data ingestion and helping to reduce the overhead of multiple writes. In terms of error handling, the plugin includes mechanisms for addressing common issues related to AWS errors during data writes, such as retry logic for throttling and the ability to create tables as needed.
Configuration
MavLink
[[inputs.mavlink]]
## Flight controller URL supporting serial port, UDP and TCP connections.
## Options are documented at
## https://mavsdk.mavlink.io/v1.4/en/cpp/guide/connections.html.
##
## Examples:
## - Serial port: serial:///dev/ttyACM0:57600
## - TCP client: tcp://192.168.1.12:5760
## - UDP client: udp://192.168.1.12:14550
## - TCP server: tcpserver://:5760
## - UDP server: udpserver://:14550
# url = "tcp://127.0.0.1:5760"
## Filter to specific messages. Only the messages in this list will be parsed.
## If blank or unset, all messages will be accepted. Glob syntax is accepted.
## Each message in this list should be lowercase camel_case, with "message_"
## prefix removed, eg: "global_position_int", "attitude"
# filter = []
## Mavlink system ID for Telegraf. Only used if the mavlink plugin is sending
## messages, eg. when `stream_request_frequency` is 0 (see below.)
# system_id = 254
## Determines whether the plugin sends requests to subscribe to data.
## In mavlink, stream rates must be configured before data is received.
## This config item sets the rate in Hz, with 0 disabling the request.
##
## This frequency should be set to 0 if your software already controls the
## rates using REQUEST_DATA_STREAM or MAV_CMD_SET_MESSAGE_INTERVAL
## (See https://mavlink.io/en/mavgen_python/howto_requestmessages.html)
# stream_request_frequency = 4
AWS Timestream
[[outputs.timestream]]
## Amazon Region
region = "us-east-1"
## Amazon Credentials
## Credentials are loaded in the following order:
## 1) Web identity provider credentials via STS if role_arn and web_identity_token_file are specified
## 2) Assumed credentials via STS if role_arn is specified
## 3) explicit credentials from 'access_key' and 'secret_key'
## 4) shared profile from 'profile'
## 5) environment variables
## 6) shared credentials file
## 7) EC2 Instance Profile
#access_key = ""
#secret_key = ""
#token = ""
#role_arn = ""
#web_identity_token_file = ""
#role_session_name = ""
#profile = ""
#shared_credential_file = ""
## Endpoint to make request against, the correct endpoint is automatically
## determined and this option should only be set if you wish to override the
## default.
## ex: endpoint_url = "http://localhost:8000"
# endpoint_url = ""
## Timestream database where the metrics will be inserted.
## The database must exist prior to starting Telegraf.
database_name = "yourDatabaseNameHere"
## Specifies if the plugin should describe the Timestream database upon starting
## to validate if it has access necessary permissions, connection, etc., as a safety check.
## If the describe operation fails, the plugin will not start
## and therefore the Telegraf agent will not start.
describe_database_on_start = false
## Specifies how the data is organized in Timestream.
## Valid values are: single-table, multi-table.
## When mapping_mode is set to single-table, all of the data is stored in a single table.
## When mapping_mode is set to multi-table, the data is organized and stored in multiple tables.
## The default is multi-table.
mapping_mode = "multi-table"
## Specifies if the plugin should create the table, if the table does not exist.
create_table_if_not_exists = true
## Specifies the Timestream table magnetic store retention period in days.
## Check Timestream documentation for more details.
## NOTE: This property is valid when create_table_if_not_exists = true.
create_table_magnetic_store_retention_period_in_days = 365
## Specifies the Timestream table memory store retention period in hours.
## Check Timestream documentation for more details.
## NOTE: This property is valid when create_table_if_not_exists = true.
create_table_memory_store_retention_period_in_hours = 24
## Specifies how the data is written into Timestream.
## Valid values are: true, false
## When use_multi_measure_records is set to true, all of the tags and fields are stored
## as a single row in a Timestream table.
## When use_multi_measure_record is set to false, Timestream stores each field in a
## separate table row, thereby storing the tags multiple times (once for each field).
## The recommended setting is true.
## The default is false.
use_multi_measure_records = "false"
## Specifies the measure_name to use when sending multi-measure records.
## NOTE: This property is valid when use_multi_measure_records=true and mapping_mode=multi-table
measure_name_for_multi_measure_records = "telegraf_measure"
## Specifies the name of the table to write data into
## NOTE: This property is valid when mapping_mode=single-table.
# single_table_name = ""
## Specifies the name of dimension when all of the data is being stored in a single table
## and the measurement name is transformed into the dimension value
## (see Mapping data from Influx to Timestream for details)
## NOTE: This property is valid when mapping_mode=single-table.
# single_table_dimension_name_for_telegraf_measurement_name = "namespace"
## Only valid and optional if create_table_if_not_exists = true
## Specifies the Timestream table tags.
## Check Timestream documentation for more details
# create_table_tags = { "foo" = "bar", "environment" = "dev"}
## Specify the maximum number of parallel go routines to ingest/write data
## If not specified, defaulted to 1 go routines
max_write_go_routines = 25
## Please see README.md to know how line protocol data is mapped to Timestream
##
Input and output integration examples
MavLink
-
Real-Time Fleet Monitoring: Utilize the MavLink plugin to create a centralized dashboard for monitoring multiple drones in real-time. By ingesting metrics from various flight controllers, operators can oversee the status, health, and location of all drones, allowing for quick decision-making and enhanced situational awareness. This integration could significantly improve coordination during large-scale operations, like aerial surveys or search and rescue missions.
-
Automated Anomaly Detection: Leverage MavLink in conjunction with machine learning algorithms to detect anomalies in flight data. By continuously monitoring metrics such as altitude, speed, and battery status, the system can alert operators to deviations from normal behavior, potentially indicating technical malfunctions or safety issues. This proactive approach can enhance safety and reduce the risk of in-flight failures.
-
Data-Driven Maintenance Scheduling: Integrate the data collected through the MavLink plugin with maintenance management systems to optimize maintenance schedules based on actual flight metrics. Analyzing the collected data can highlight patterns indicating when specific components are likely to fail, thereby enabling predictive maintenance strategies that minimize downtime and repair costs.
-
Enhanced Research Analytics: For academic and commercial UAV research, MavLink can be used to gather extensive flight data for analysis. By compiling metrics over numerous flights, researchers can uncover insights related to flight patterns, environmental interactions, and the efficiency of different drone models. This can foster advancements in UAV technology and broader applications in autonomous systems.
AWS Timestream
-
IoT Data Metrics: Use the Timestream plugin to send real-time metrics from IoT devices to Timestream, allowing for quick analysis and visualization of sensor data. By organizing device readings into a time series format, users can track trends, identify anomalies, and streamline operational decisions based on device performance.
-
Application Performance Monitoring: Leverage Timestream alongside application monitoring tools to send metrics about service performance over time. This integration enables engineers to perform historical analysis of application performance, correlate it with business metrics, and optimize resource allocation based on usage patterns viewed over time.
-
Automated Data Archiving: Configure the Timestream plugin to write data to Timestream while simultaneously managing retention periods. This setup can automate archiving strategies, ensuring that older data is preserved according to predefined criteria. This is especially useful for compliance and historical analysis, allowing businesses to maintain their data lifecycle with minimal manual intervention.
-
Multi-Application Metrics Aggregation: Utilize the Timestream plugin to aggregate metrics from multiple applications into Timestream. By creating a unified database of performance metrics, organizations can gain holistic insights across various services, improving visibility into system-wide performance and facilitating cross-application troubleshooting.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration