Memcached and M3DB Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Memcached and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

This plugin gathers statistics data from a Memcached server.

This plugin allows Telegraf to stream metrics to M3DB using the Prometheus Remote Write protocol, enabling scalable ingestion through the M3 Coordinator.

Integration details

Memcached

The Telegraf Memcached plugin is designed to gather statistics data from Memcached servers, allowing users to monitor the performance and health of their caching layer. Memcached, a distributed memory caching system, is commonly used for speeding up dynamic web applications by alleviating database load and storing frequently accessed data in memory for quick retrieval. This plugin collects various metrics such as the number of connections, bytes used, and hits/misses, enabling administrators to analyze cache performance, troubleshoot issues, and optimize resource allocation. The configuration supports multiple Memcached server addresses and offers optional TLS settings, ensuring flexibility and secure data transmission across the network. By leveraging this plugin, organizations can gain insights into their caching strategies and improve application responsiveness and efficiency.

M3DB

This configuration uses Telegraf’s HTTP output plugin with prometheusremotewrite format to send metrics directly to M3DB through the M3 Coordinator. M3DB is a distributed time series database designed for scalable, high-throughput metric storage. It supports ingestion of Prometheus remote write data via its Coordinator component, which manages translation and routing into the M3DB cluster. This approach enables organizations to collect metrics from systems that aren’t natively instrumented for Prometheus (e.g., Windows, SNMP, legacy systems) and ingest them efficiently into M3’s long-term, high-performance storage engine. The setup is ideal for high-scale observability stacks with Prometheus compatibility requirements.

Configuration

Memcached

[[inputs.memcached]]
  # An array of address to gather stats about. Specify an ip on hostname
  # with optional port. ie localhost, 10.0.0.1:11211, etc.
  servers = ["localhost:11211"]
  # An array of unix memcached sockets to gather stats about.
  # unix_sockets = ["/var/run/memcached.sock"]

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

M3DB

# Configuration for sending metrics to M3
[outputs.http]
  ## URL is the address to send metrics to
  url = "https://M3_HOST:M3_PORT/api/v1/prom/remote/write"

  ## HTTP Basic Auth credentials
  username = "admin"
  password = "password"

  ## Data format to output.
  data_format = "prometheusremotewrite"

  ## Outgoing HTTP headers
  [outputs.http.headers]
    Content-Type = "application/x-protobuf"
    Content-Encoding = "snappy"
    X-Prometheus-Remote-Write-Version = "0.1.0"

Input and output integration examples

Memcached

  1. Dynamic Cache Performance Monitoring: Use the Memcached plugin to set up a performance monitoring dashboard that displays real-time statistics about cache hit ratios, connection counts, and memory usage. This setup can help developers and system admins quickly identify performance bottlenecks and optimize caching strategies to improve application speed.

  2. Alerting on Cache Performance Metrics: Implement an alerting system that triggers notifications whenever certain thresholds are breached, such as a decrease in cache hit rates or an increase in rejected connections. This proactive approach can help teams respond to potential issues before they affect user experience and maintain optimal application performance.

  3. Integrating Cache Metrics with Business Analytics: Combine Memcached metrics with business intelligence tools to analyze the impact of caching on user engagement and transaction volumes. By correlating cache performance with key business metrics, teams can derive insights into how caching strategies contribute to overall business objectives and improve decision-making processes.

M3DB

  1. Large-Scale Cloud Infrastructure Monitoring: Deploy Telegraf agents across thousands of virtual machines and containers to collect metrics and stream them into M3DB through the M3 Coordinator. This provides reliable, long-term visibility with minimal storage overhead and high availability.

  2. Legacy System Metrics Ingestion: Use Telegraf to gather metrics from older systems that lack native Prometheus exporters (e.g., Windows servers, SNMP devices) and forward them to M3DB via remote write. This bridges modern observability workflows with legacy infrastructure.

  3. Centralized App Telemetry Aggregation: Collect application-specific telemetry using Telegraf’s plugin ecosystem (e.g., exec, http, jolokia) and push it into M3DB for centralized storage and query via PromQL. This enables unified analytics across diverse data sources.

  4. Hybrid Cloud Observability: Install Telegraf agents on-prem and in the cloud to collect and remote-write metrics into a centralized M3DB cluster. This ensures consistent visibility across environments while avoiding the complexity of running Prometheus federation layers.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration