Modbus and MongoDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Modbus plugin allows you to collect data from Modbus devices using various communication methods, enhancing your ability to monitor and control industrial processes.
The MongoDB Plugin allows you to send metrics to a MongoDB instance.
Integration details
Modbus
The Modbus plugin collects discrete inputs, coils, input registers, and holding registers via Modbus TCP or Modbus RTU/ASCII.
MongoDB
This plugin sends metrics to MongoDB, automatically creating time series collections where they don’t already exist. Time series collections require MongoDB 5.0+.
Configuration
Modbus
[[inputs.modbus]]
name = "Device"
slave_id = 1
timeout = "1s"
configuration_type = "register"
discrete_inputs = [
{ name = "start", address = [0]},
{ name = "stop", address = [1]},
{ name = "reset", address = [2]},
{ name = "emergency_stop", address = [3]},
]
coils = [
{ name = "motor1_run", address = [0]},
{ name = "motor1_jog", address = [1]},
{ name = "motor1_stop", address = [2]},
]
holding_registers = [
{ name = "power_factor", byte_order = "AB", data_type = "FIXED", scale=0.01, address = [8]},
{ name = "voltage", byte_order = "AB", data_type = "FIXED", scale=0.1, address = [0]},
{ name = "energy", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [5,6]},
{ name = "current", byte_order = "ABCD", data_type = "FIXED", scale=0.001, address = [1,2]},
{ name = "frequency", byte_order = "AB", data_type = "UFIXED", scale=0.1, address = [7]},
{ name = "power", byte_order = "ABCD", data_type = "UFIXED", scale=0.1, address = [3,4]},
{ name = "firmware", byte_order = "AB", data_type = "STRING", address = [5, 6, 7, 8, 9, 10, 11, 12]},
]
input_registers = [
{ name = "tank_level", byte_order = "AB", data_type = "INT16", scale=1.0, address = [0]},
{ name = "tank_ph", byte_order = "AB", data_type = "INT16", scale=1.0, address = [1]},
{ name = "pump1_speed", byte_order = "ABCD", data_type = "INT32", scale=1.0, address = [3,4]},
]
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
Input and output integration examples
Modbus
- Basic Usage: To read from a single device, configure it with the device name and IP address, specifying the slave ID and registers of interest.
- Multiple Requests: You can define multiple requests to fetch data from different Modbus slave devices in a single configuration by specifying multiple
[[inputs.modbus.request]]
sections. - Data Processing: Utilize the scaling features to convert raw Modbus readings into useful metrics, adjusting for unit conversions as needed.
MongoDB
-
Log Management: Integrate this plugin to send application logs directly to MongoDB for structured storage and flexible querying. You can analyze logs as time series data, aggregating logs by hour, day, or month.
-
Metric Capture: Use the plugin to capture system metrics (CPU, memory usage) in real-time and store them in MongoDB. The time-series collections will allow for efficient queries over time ranges.
-
Monitoring Solutions: Combine this output plugin with inputs from various sources, such as disk usage metrics, network statistics, or application performance data. It allows for consolidated monitoring dashboards with historical trends saved in MongoDB.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration