NATS and Parquet Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The NATS Consumer Input Plugin enables real-time data consumption from NATS messaging subjects, integrating seamlessly into the Telegraf data pipeline for monitoring and metrics gathering.
This plugin writes metrics to parquet files, utilizing a schema based on the metrics grouped by name. It supports file rotation and buffered writing for optimal performance.
Integration details
NATS
The NATS Consumer Plugin allows Telegraf to read metrics from specified NATS subjects and create metrics based on supported input data formats. Utilizing a Queue Group allows multiple instances of Telegraf to read from a NATS cluster in parallel, enhancing throughput and reliability. This plugin also supports various authentication methods, including username/password, NATS credentials files, and nkey seed files, ensuring secure communication with the NATS servers. It is particularly useful in environments where data persistence and message reliability are critical, thanks to features such as JetStream that facilitate the consumption of historical messages. Additionally, the ability to configure various operational parameters makes this plugin suitable for high-throughput scenarios while maintaining performance integrity.
Parquet
The Parquet output plugin for Telegraf writes metrics to parquet files, which are columnar storage formats optimized for analytics. By default, this plugin groups metrics by their name, writing them to a single file. If a metric’s schema does not align with existing schemas, those metrics are dropped. The plugin generates an Apache Arrow schema based on all grouped metrics, ensuring that the schema reflects the union of all fields and tags. It operates in a buffered manner, meaning it temporarily holds metrics in memory before writing them to disk for efficiency. Parquet files require proper closure to ensure readability, and this is crucial when using the plugin, as improper closure can lead to unreadable files. Additionally, the plugin supports file rotation after specific time intervals, preventing overwrites of existing files and schema conflicts when a file with the same name already exists.
Configuration
NATS
[[inputs.nats_consumer]]
## urls of NATS servers
servers = ["nats://localhost:4222"]
## subject(s) to consume
## If you use jetstream you need to set the subjects
## in jetstream_subjects
subjects = ["telegraf"]
## jetstream subjects
## jetstream is a streaming technology inside of nats.
## With jetstream the nats-server persists messages and
## a consumer can consume historical messages. This is
## useful when telegraf needs to restart it don't miss a
## message. You need to configure the nats-server.
## https://docs.nats.io/nats-concepts/jetstream.
jetstream_subjects = ["js_telegraf"]
## name a queue group
queue_group = "telegraf_consumers"
## Optional authentication with username and password credentials
# username = ""
# password = ""
## Optional authentication with NATS credentials file (NATS 2.0)
# credentials = "/etc/telegraf/nats.creds"
## Optional authentication with nkey seed file (NATS 2.0)
# nkey_seed = "/etc/telegraf/seed.txt"
## Use Transport Layer Security
# secure = false
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
## Sets the limits for pending msgs and bytes for each subscription
## These shouldn't need to be adjusted except in very high throughput scenarios
# pending_message_limit = 65536
# pending_bytes_limit = 67108864
## Max undelivered messages
## This plugin uses tracking metrics, which ensure messages are read to
## outputs before acknowledging them to the original broker to ensure data
## is not lost. This option sets the maximum messages to read from the
## broker that have not been written by an output.
##
## This value needs to be picked with awareness of the agent's
## metric_batch_size value as well. Setting max undelivered messages too high
## can result in a constant stream of data batches to the output. While
## setting it too low may never flush the broker's messages.
# max_undelivered_messages = 1000
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
data_format = "influx"
Parquet
[[outputs.parquet]]
## Directory to write parquet files in. If a file already exists the output
## will attempt to continue using the existing file.
# directory = "."
## Files are rotated after the time interval specified. When set to 0 no time
## based rotation is performed.
# rotation_interval = "0h"
## Timestamp field name
## Field name to use to store the timestamp. If set to an empty string, then
## the timestamp is omitted.
# timestamp_field_name = "timestamp"
Input and output integration examples
NATS
-
Real-Time Analytics Dashboard: Utilize the NATS plugin to gather metrics from various NATS subjects in real time and feed them into a centralized analytics dashboard. This setup allows for immediate visibility into live application performance, enabling teams to react swiftly to operational issues or performance degradation.
-
Distributed System Monitoring: Deploy multiple instances of Telegraf configured with the NATS plugin across a distributed architecture. This approach allows teams to aggregate metrics from various microservices efficiently, providing a holistic view of system health and performance while ensuring no messages are dropped during transmission.
-
Historical Message Recovery: Leverage the capabilities of NATS JetStream along with this plugin to recover and process historical messages after Telegraf has been restarted. This feature is particularly beneficial for applications that require high reliability, ensuring that no critical metrics are lost even in case of service disruptions.
-
Dynamic Load Balancing: Implement a dynamic load balancing scenario where Telegraf instances consume messages from a NATS cluster based on load. Adjust the queue group settings to control the number of active consumers, allowing for better resource utilization and performance scaling as demand fluctuations occur.
Parquet
-
Data Lake Ingestion: Utilize the Parquet plugin to store metrics from various sources into a data lake. By writing metrics in parquet format, you establish a standardized and efficient way to manage time-series data, enabling faster querying capabilities and seamless integration with analytics tools like Apache Spark or AWS Athena. This setup can significantly improve data retrieval times and analysis workflows.
-
Long-term Storage of Metrics: Implement the Parquet plugin in a monitoring setup where metrics are collected over time from multiple applications. This allows for long-term storage of performance data in a compact format, making it cost-effective to store vast amounts of historical data while preserving the ability for quick retrieval and analysis later on. By archiving metrics in parquet files, organizations can maintain compliance and create detailed reports from historical performance trends.
-
Analytics and Reporting: After writing metrics to parquet files, leverage tools like Apache Arrow or PyArrow to perform complex analytical queries directly on the files without needing to load all the data into memory. This can enhance reporting capabilities, allowing teams to generate insights and visualization from large datasets efficiently, thereby improving decision-making processes based on accurate, up-to-date performance metrics.
-
Integrating with Data Warehouses: Use the Parquet plugin as part of a data integration pipeline that feeds into a modern data warehouse. By converting metrics to parquet format, the data can be easily ingested by systems like Snowflake or Google BigQuery, enabling powerful analytics and business intelligence capabilities that drive actionable insights from the collected metrics.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration