Netflow and DuckDB Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Netflow plugin is designed to collect traffic flow data from devices using the Netflow v5, v9 and IPFIX protocols. By capturing detailed flow information, this plugin supports network observability and analysis, enabling administrators to monitor traffic patterns and performance metrics effectively.
This plugin enables Telegraf to write structured metrics into DuckDB using SQLite-compatible SQL connections, supporting lightweight local analytics and offline metric analysis.
Integration details
Netflow
The Netflow plugin serves as a collector for flow data using protocols such as Netflow v5, Netflow v9, and IPFIX. This plugin allows users to gather important flow metrics from devices that support these protocols, including a variety of operational insights about traffic patterns, source/destination information, and protocol usage. The plugin leverages templates sent by flow devices to decode incoming data correctly, and it supports private enterprise number mappings for vendor-specific information. With features like adjustable service addresses and buffer sizes, the plugin provides flexibility in how it can be deployed within various network architectures, making it an essential tool for network monitoring and analysis.
DuckDB
Use the Telegraf SQL plugin to write metrics into a local DuckDB database. DuckDB is an in-process OLAP database designed for efficient analytical queries on columnar data. Although it does not provide a traditional client-server interface, DuckDB can be accessed via SQLite-compatible drivers in embedded mode. This allows Telegraf to store time series metrics in DuckDB using SQL, enabling powerful analytics workflows using familiar SQL syntax, Jupyter notebooks, or integration with data science tools like Python and R. DuckDB’s columnar storage and vectorized execution make it ideal for compact and high-performance metric archives.
Configuration
Netflow
[[inputs.netflow]]
## Address to listen for netflow,ipfix or sflow packets.
## example: service_address = "udp://:2055"
## service_address = "udp4://:2055"
## service_address = "udp6://:2055"
service_address = "udp://:2055"
## Set the size of the operating system's receive buffer.
## example: read_buffer_size = "64KiB"
## Uses the system's default if not set.
# read_buffer_size = ""
## Protocol version to use for decoding.
## Available options are
## "ipfix" -- IPFIX / Netflow v10 protocol (also works for Netflow v9)
## "netflow v5" -- Netflow v5 protocol
## "netflow v9" -- Netflow v9 protocol (also works for IPFIX)
## "sflow v5" -- sFlow v5 protocol
# protocol = "ipfix"
## Private Enterprise Numbers (PEN) mappings for decoding
## This option allows to specify vendor-specific mapping files to use during
## decoding.
# private_enterprise_number_files = []
## Log incoming packets for tracing issues
# log_level = "trace"
DuckDB
[[outputs.sql]]
## Use the SQLite driver to connect to DuckDB via Go's database/sql
driver = "sqlite3"
## DSN should point to the DuckDB database file
dsn = "file:/var/lib/telegraf/metrics.duckdb"
## SQL INSERT statement with placeholders for metrics
table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Optional: manage connection pooling
# max_open_connections = 1
# max_idle_connections = 1
# conn_max_lifetime = "0s"
## DuckDB does not require TLS or authentication by default
Input and output integration examples
Netflow
-
Traffic Analysis and Visualization: Use the Netflow plugin to collect traffic flow data and visualize it in real-time using an analytics platform. Administrators can create dashboards that display traffic patterns and anomalies, helping them understand bandwidth usage and user behavior.
-
Network Performance Optimization: Integrate the Netflow plugin with performance monitoring tools to identify bottlenecks and optimize the network. Analyze collected metrics to pinpoint areas where network resources can be improved, enhancing overall system performance.
-
Anomaly Detection for Security: Leverage the Netflow data for security analysis by feeding it into an anomaly detection system. This can help identify unusual traffic patterns that may indicate potential security threats, enabling quicker responses to prevent breaches.
-
Customized Alerts for Network Events: Configure threshold-based alerts using the Netflow plugin metrics to notify network administrators of unusual spikes or drops in traffic. This proactive monitoring can help in quickly addressing potential issues before they escalate.
DuckDB
-
Embedded Metric Warehousing for Notebooks: Write metrics to a local DuckDB file from Telegraf and analyze them in Jupyter notebooks using Python or R. This workflow supports reproducible analytics, ideal for data science experiments or offline troubleshooting.
-
Batch Time-Series Processing on the Edge: Use Telegraf with DuckDB on edge devices to log metrics locally in SQL format. The compact storage and fast analytical capabilities of DuckDB make it ideal for batch processing and low-bandwidth environments.
-
Exploratory Querying of Historical Metrics: Accumulate system metrics over time in DuckDB and perform exploratory data analysis (EDA) using SQL joins, window functions, and aggregates. This enables insights that go beyond what typical time-series dashboards provide.
-
Self-Contained Metric Snapshots: Use DuckDB as a portable metrics archive by shipping
.duckdb
files between systems. Telegraf can collect and store data in this format, and analysts can later load and query it using the DuckDB CLI or integrations with tools like Tableau and Apache Arrow.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration