ntpq and OpenObserve Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider using the ntpq plugin with InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The ntpq plugin collects standard metrics related to the Network Time Protocol (NTP) by executing the ntpq command. It gathers essential information about the synchronization state of the local machine with remote NTP servers, providing valuable insights into timekeeping accuracy and network performance.

This configuration pairs Telegraf’s HTTP output with OpenObserve’s native JSON ingestion API, turning any Telegraf agent into a first-class OpenObserve collector.

Integration details

ntpq

The ntpq Telegraf plugin provides a way to gather metrics from the Network Time Protocol (NTP) by querying the NTP server using the ntpq executable. This plugin collects a variety of metrics related to the synchronization status with remote NTP servers, including delay, jitter, offset, polling frequency, and reachability. These metrics are crucial for understanding the performance and reliability of time synchronization efforts in systems that rely on accurate timekeeping. NTP plays a vital role in networked environments, enabling synchronized clocks across devices which is essential for logging, coordination of activities, and security protocols. Through this plugin, users can monitor the effectiveness of their time synchronization processes, making it easier to identify issues related to network delays or misconfigurations, thus ensuring that systems remain in sync and operate efficiently.

OpenObserve

OpenObserve is an open source observability platform written in Rust that stores data cost-effectively on object storage or local disk. It exposes REST endpoints such as /api/{org}/ingest/metrics/_json that accept batched metric documents conforming to a concise JSON schema, making it an attractive drop-in replacement for Loki or Elasticsearch stacks. The Telegraf HTTP output plugin streams metrics to arbitrary HTTP targets; when the "data_format = "json"" serializer is selected, Telegraf batches its metric objects into a payload that matches OpenObserve’s ingestion contract. The plugin supports configurable batch size, custom headers, TLS, and compression, allowing operators to authenticate with Basic or Bearer tokens and to enforce back-pressure without additional collectors. By reusing existing Telegraf agents already collecting system, application, or SNMP data, organizations can funnel rich telemetry into OpenObserve dashboards and SQL-like analytics with minimal overhead, enabling unified observability, long-term retention, and real-time alerting without vendor lock-in.

Configuration

ntpq

[[inputs.ntpq]]
  ## Servers to query with ntpq.
  ## If no server is given, the local machine is queried.
  # servers = []

  ## If false, set the -n ntpq flag. Can reduce metric gather time.
  ## DEPRECATED since 1.24.0: add '-n' to 'options' instead to skip DNS lookup
  # dns_lookup = true

  ## Options to pass to the ntpq command.
  # options = "-p"

  ## Output format for the 'reach' field.
  ## Available values are
  ##   octal   --  output as is in octal representation e.g. 377 (default)
  ##   decimal --  convert value to decimal representation e.g. 371 -> 249
  ##   count   --  count the number of bits in the value. This represents
  ##               the number of successful reaches, e.g. 37 -> 5
  ##   ratio   --  output the ratio of successful attempts e.g. 37 -> 5/8 = 0.625
  # reach_format = "octal"

OpenObserve

[[outputs.http]]
  ## OpenObserve JSON metrics ingestion endpoint
  url = "https://api.openobserve.ai/api/default/ingest/metrics/_json"

  ## Use POST to push batches
  method = "POST"

  ## Basic auth header (base64 encoded "username:password")
  headers = { Authorization = "Basic dXNlcjpwYXNzd29yZA==" }

  ## Timeout for HTTP requests
  timeout = "10s"

  ## Override Content-Type to match OpenObserve expectation
  content_type = "application/json"

  ## Force Telegraf to batch and serialize metrics as JSON
  data_format = "json"

  ## JSON serializer specific options
  json_timestamp_units = "1ms"

  ## Uncomment to restrict batch size
  # batch_size = 5000

Input and output integration examples

ntpq

  1. Network Time Monitoring Dashboard: Utilize the ntpq plugin to create a centralized monitoring dashboard for tracking the reliability and performance of network time synchronization across multiple servers. By visualizing metrics such as delay and jitter, system administrators can quickly identify which servers are providing accurate time versus those with significant latency issues, ensuring that all systems remain synchronized effectively.

  2. Automated Alert System for Time Drift: Implement an automated alert system that leverages ntpq metrics to notify operations teams when time drift exceeds acceptable thresholds. By analyzing the offset and jitter values, the system can trigger alerts if any remote NTP server is out of sync, allowing for swift remediation actions to maintain time accuracy across critical infrastructure.

  3. Comparative Analysis of Time Sources: Use the ntpq plugin to perform a comparative analysis of different NTP servers over time. By querying multiple NTP sources and monitoring their metrics, organizations can evaluate the performance and reliability of their time sources, making informed decisions about which NTP servers to configure as primary or secondary in their environments.

  4. Historical Performance Tracking for NTP: Gather historical performance data on various NTP servers using the ntpq plugin, enabling long-term trend analysis for timekeeping accuracy. This can help organizations identify patterns or recurring issues related to specific servers, informing future decisions about infrastructure changes or adjustments related to time synchronization strategies.

OpenObserve

  1. Edge Device Health Mirror: Deploy Telegraf on thousands of industrial IoT devices to capture temperature, vibration, and power metrics, then use this output to push JSON batches to OpenObserve. Plant operators gain a real-time overview of machine health and can trigger maintenance based on anomalies without relying on heavyweight collectors.

  2. Blue-Green Deployment Canary: Attach a lightweight Telegraf sidecar to each Kubernetes release-candidate pod that scrapes /metrics and forwards container stats to a dedicated “canary” stream in OpenObserve. Continuous comparison of error rates between blue and green versions empowers the CI pipeline to auto-roll back poor performers within seconds.

  3. Multi-Tenant SaaS Billing Pipeline: Emit per-customer usage counters via Telegraf and tag them with tenant_id; the HTTP plugin posts them to OpenObserve where SQL reports aggregate usage into invoices, eliminating separate metering services and simplifying compliance audits.

  4. Security Threat Scoring: Fuse Suricata events and host resource metrics in Telegraf, deliver them to OpenObserve’s analytics engine, and run stream-processing rules that correlate spikes in suspicious traffic with CPU saturation to produce an actionable threat score and automatically open tickets in a SOAR platform.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration