Nvidia SMI and Apache Druid Integration

Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.

info

This is not the recommended configuration for real-time query at scale. For query and compression optimization, high-speed ingest, and high availability, you may want to consider Nvidia SMI and InfluxDB.

5B+

Telegraf downloads

#1

Time series database
Source: DB Engines

1B+

Downloads of InfluxDB

2,800+

Contributors

Table of Contents

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Input and output integration overview

The Nvidia SMI Plugin enables the retrieval of detailed statistics about NVIDIA GPUs attached to the host system, providing essential insights for performance monitoring.

This plugin allows Telegraf to send JSON-formatted metrics to Apache Druid over HTTP, enabling real-time ingestion for analytical queries on high-volume time-series data.

Integration details

Nvidia SMI

The Nvidia SMI Plugin is designed to gather metrics regarding the performance and status of NVIDIA GPUs on the host machine. By leveraging the capabilities of the nvidia-smi command-line tool, this plugin pulls crucial information such as GPU memory utilization, temperature, fan speed, and various performance metrics. This data is essential for monitoring GPU health and performance in real-time, particularly in environments where GPU performance directly impacts computing tasks, such as machine learning, 3D rendering, and high-performance computing. The plugin provides flexibility by allowing users to specify the path to the nvidia-smi binary and configure polling timeouts, accommodating both Linux and Windows systems where the nvidia-smi tool is commonly located. With its ability to collect detailed statistics on each GPU, this plugin becomes a vital resource for any infrastructure relying on NVIDIA hardware, facilitating proactive management and performance tuning.

Apache Druid

This configuration uses Telegraf’s HTTP output plugin with json data format to send metrics directly to Apache Druid, a real-time analytics database designed for fast, ad hoc queries on high-ingest time-series data. Druid supports ingestion via HTTP POST to various components like the Tranquility service or native ingestion endpoints. The JSON format is ideal for structuring Telegraf metrics into event-style records for Druid’s columnar and time-partitioned storage engine. Druid excels at powering interactive dashboards and exploratory queries across massive datasets, making it an excellent choice for real-time observability and monitoring analytics when integrated with Telegraf.

Configuration

Nvidia SMI

[[inputs.nvidia_smi]]
  ## Optional: path to nvidia-smi binary, defaults "/usr/bin/nvidia-smi"
  ## We will first try to locate the nvidia-smi binary with the explicitly specified value (or default value),
  ## if it is not found, we will try to locate it on PATH(exec.LookPath), if it is still not found, an error will be returned
  # bin_path = "/usr/bin/nvidia-smi"

  ## Optional: timeout for GPU polling
  # timeout = "5s"

Apache Druid

[[outputs.http]]
  ## Druid ingestion endpoint (e.g., Tranquility, HTTP Ingest, or Kafka REST Proxy)
  url = "http://druid-ingest.example.com/v1/post"

  ## Use POST method to send events
  method = "POST"

  ## Data format for Druid ingestion (expects JSON format)
  data_format = "json"

  ## Optional headers (may vary depending on Druid setup)
  # [outputs.http.headers]
  #   Content-Type = "application/json"
  #   Authorization = "Bearer YOUR_API_TOKEN"

  ## Optional timeout and TLS settings
  timeout = "10s"
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"
  # insecure_skip_verify = false

Input and output integration examples

Nvidia SMI

  1. Real-Time GPU Monitoring for ML Training: Continuously monitor the GPU utilization and memory usage during machine learning model training. This enables data scientists to ensure that their GPUs are not being overutilized or underutilized, optimizing resource allocation and reviewing performance bottlenecks in real-time.

  2. Automated Alerts for Overheating GPUs: Implement a system using the Nvidia SMI plugin to track GPU temperatures and set alerts for instances where temperatures exceed safe thresholds. This proactive monitoring can prevent hardware damage and improve system reliability by alerting administrators to potential cooling issues before they result in failure.

  3. Performance Baselines for GPU Resources: Establish baseline performance metrics for your GPU resources. By regularly collecting data and analyzing trends in GPU usage, organizations can identify anomalies and optimize their workloads accordingly, leading to enhanced operational efficiency.

  4. Dockerized GPU Usage Insights: In a containerized environment, use the plugin to monitor GPU performance from within a Docker container. This allows developers to track GPU performance of their applications in production, facilitating troubleshooting and performance optimization within isolated environments.

Apache Druid

  1. Real-Time Application Monitoring Dashboard: Use Telegraf to collect metrics from application servers and send them to Druid for immediate analysis and visualization in dashboards. Druid’s low-latency querying allows users to interactively explore system behavior in near real-time.

  2. Security Event Aggregation: Aggregate and forward security-related metrics such as failed logins, port scans, or process anomalies to Druid. Analysts can build dashboards to monitor threat patterns and investigate incidents with millisecond-level granularity.

  3. IoT Device Analytics: Collect telemetry from edge devices via Telegraf and send it to Druid for fast, scalable processing. Druid’s time-partitioned storage and roll-up capabilities are ideal for handling billions of small JSON events from sensors or gateways.

  4. Web Traffic Behavior Exploration: Use Telegraf to capture web server metrics (e.g., requests per second, latency, error rates) and forward them to Druid. This enables teams to drill down into user behavior by region, device, or request type with subsecond query performance.

Feedback

Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.

Powerful Performance, Limitless Scale

Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.

See Ways to Get Started

Related Integrations

HTTP and InfluxDB Integration

The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.

View Integration

Kafka and InfluxDB Integration

This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.

View Integration

Kinesis and InfluxDB Integration

The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.

View Integration