Nvidia SMI and Nebius Cloud Monitoring Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Nvidia SMI Plugin enables the retrieval of detailed statistics about NVIDIA GPUs attached to the host system, providing essential insights for performance monitoring.
This plugin allows users to effortlessly send aggregated metrics to Nebius Cloud Monitoring, leveraging the cloud’s monitoring solutions.
Integration details
Nvidia SMI
The Nvidia SMI Plugin is designed to gather metrics regarding the performance and status of NVIDIA GPUs on the host machine. By leveraging the capabilities of the nvidia-smi
command-line tool, this plugin pulls crucial information such as GPU memory utilization, temperature, fan speed, and various performance metrics. This data is essential for monitoring GPU health and performance in real-time, particularly in environments where GPU performance directly impacts computing tasks, such as machine learning, 3D rendering, and high-performance computing. The plugin provides flexibility by allowing users to specify the path to the nvidia-smi
binary and configure polling timeouts, accommodating both Linux and Windows systems where the nvidia-smi
tool is commonly located. With its ability to collect detailed statistics on each GPU, this plugin becomes a vital resource for any infrastructure relying on NVIDIA hardware, facilitating proactive management and performance tuning.
Nebius Cloud Monitoring
The Nebius Cloud Monitoring plugin serves as an intermediary to send custom metrics to the Nebius Cloud Monitoring service. It is designed specifically to facilitate the monitoring of applications and services running within the Nebius ecosystem. This plugin is especially useful for users of the Nebius Cloud Platform who need to leverage cloud-based monitoring capabilities without significant configuration overhead. The plugin’s integration relies on Google Cloud metadata, allowing it to automatically fetch the necessary authentication credentials from the Compute instance it operates within. Key technical considerations include the management of reserved labels to ensure metrics are recorded correctly without conflicts.
Configuration
Nvidia SMI
[[inputs.nvidia_smi]]
## Optional: path to nvidia-smi binary, defaults "/usr/bin/nvidia-smi"
## We will first try to locate the nvidia-smi binary with the explicitly specified value (or default value),
## if it is not found, we will try to locate it on PATH(exec.LookPath), if it is still not found, an error will be returned
# bin_path = "/usr/bin/nvidia-smi"
## Optional: timeout for GPU polling
# timeout = "5s"
Nebius Cloud Monitoring
[[outputs.nebius_cloud_monitoring]]
## Timeout for HTTP writes.
# timeout = "20s"
## Nebius.Cloud monitoring API endpoint. Normally should not be changed
# endpoint = "https://monitoring.api.il.nebius.cloud/monitoring/v2/data/write"
Input and output integration examples
Nvidia SMI
-
Real-Time GPU Monitoring for ML Training: Continuously monitor the GPU utilization and memory usage during machine learning model training. This enables data scientists to ensure that their GPUs are not being overutilized or underutilized, optimizing resource allocation and reviewing performance bottlenecks in real-time.
-
Automated Alerts for Overheating GPUs: Implement a system using the Nvidia SMI plugin to track GPU temperatures and set alerts for instances where temperatures exceed safe thresholds. This proactive monitoring can prevent hardware damage and improve system reliability by alerting administrators to potential cooling issues before they result in failure.
-
Performance Baselines for GPU Resources: Establish baseline performance metrics for your GPU resources. By regularly collecting data and analyzing trends in GPU usage, organizations can identify anomalies and optimize their workloads accordingly, leading to enhanced operational efficiency.
-
Dockerized GPU Usage Insights: In a containerized environment, use the plugin to monitor GPU performance from within a Docker container. This allows developers to track GPU performance of their applications in production, facilitating troubleshooting and performance optimization within isolated environments.
Nebius Cloud Monitoring
-
Dynamic Application Monitoring: Integrate this plugin with your application to continuously send metrics related to resource usage, such as CPU and memory utilization, to Nebius Cloud Monitoring. By doing so, you can gain insights into the performance of your application, allowing for adjustments in real-time based on the metrics received.
-
Incident Response Automation: Use the Nebius Cloud Monitoring plugin to automatically send alerts and metrics when certain thresholds are reached. For instance, if a particular service’s uptime drops below a certain percentage, the plugin can be configured to report this directly to the monitoring service, enabling quicker incident response and resolution.
-
Comparative Service Analysis: Set up the plugin to send metrics from multiple cloud instances running different versions of the same application to Nebius Cloud Monitoring. This approach allows for a comparative analysis of resource usage and performance, helping teams determine which version performs best under similar workloads.
-
Aggregated Metrics Dashboard: Use this plugin to create a centralized dashboard displaying metrics from various services across your cloud instances. By aggregating different application metrics into one interface, stakeholders can assess the overall health and performance of their cloud environment easily.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration