Nvidia SMI and ServiceNow Integration
Powerful performance with an easy integration, powered by Telegraf, the open source data connector built by InfluxData.
5B+
Telegraf downloads
#1
Time series database
Source: DB Engines
1B+
Downloads of InfluxDB
2,800+
Contributors
Table of Contents
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Input and output integration overview
The Nvidia SMI Plugin enables the retrieval of detailed statistics about NVIDIA GPUs attached to the host system, providing essential insights for performance monitoring.
This output plugin streams metrics from Telegraf directly to a ServiceNow MID Server via HTTP, leveraging the nowmetric
serializer for efficient integration with ServiceNow’s Operational Intelligence and Event Management.
Integration details
Nvidia SMI
The Nvidia SMI Plugin is designed to gather metrics regarding the performance and status of NVIDIA GPUs on the host machine. By leveraging the capabilities of the nvidia-smi
command-line tool, this plugin pulls crucial information such as GPU memory utilization, temperature, fan speed, and various performance metrics. This data is essential for monitoring GPU health and performance in real-time, particularly in environments where GPU performance directly impacts computing tasks, such as machine learning, 3D rendering, and high-performance computing. The plugin provides flexibility by allowing users to specify the path to the nvidia-smi
binary and configure polling timeouts, accommodating both Linux and Windows systems where the nvidia-smi
tool is commonly located. With its ability to collect detailed statistics on each GPU, this plugin becomes a vital resource for any infrastructure relying on NVIDIA hardware, facilitating proactive management and performance tuning.
ServiceNow
Telegraf can be used to send metric data directly to a ServiceNow MID Server REST endpoint. Metrics are formatted either using ServiceNow’s Operational Intelligence (OI) format or JSONv2 format, enabling seamless integration with ServiceNow’s Event Management and Operational Intelligence platforms. The serializer batches metrics efficiently, reducing network overhead by minimizing the number of HTTP POST requests. This integration allows users to quickly leverage metrics in ServiceNow for enhanced observability, proactive incident management, and performance monitoring, with ServiceNow’s operational intelligence capabilities.
Configuration
Nvidia SMI
[[inputs.nvidia_smi]]
## Optional: path to nvidia-smi binary, defaults "/usr/bin/nvidia-smi"
## We will first try to locate the nvidia-smi binary with the explicitly specified value (or default value),
## if it is not found, we will try to locate it on PATH(exec.LookPath), if it is still not found, an error will be returned
# bin_path = "/usr/bin/nvidia-smi"
## Optional: timeout for GPU polling
# timeout = "5s"
ServiceNow
[[outputs.http]]
## ServiceNow MID Server metrics endpoint
url = "http://mid-server.example.com:9082/api/mid/sa/metrics"
## HTTP request method
method = "POST"
## Basic Authentication credentials
username = "evt.integration"
password = "P@$$w0rd!"
## Data serialization format for ServiceNow
data_format = "nowmetric"
## Metric format type: "oi" (default) or "jsonv2"
nowmetric_format = "oi"
## HTTP Headers
[outputs.http.headers]
Content-Type = "application/json"
Accept = "application/json"
## Optional timeout
# timeout = "5s"
## TLS configuration options
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
Input and output integration examples
Nvidia SMI
-
Real-Time GPU Monitoring for ML Training: Continuously monitor the GPU utilization and memory usage during machine learning model training. This enables data scientists to ensure that their GPUs are not being overutilized or underutilized, optimizing resource allocation and reviewing performance bottlenecks in real-time.
-
Automated Alerts for Overheating GPUs: Implement a system using the Nvidia SMI plugin to track GPU temperatures and set alerts for instances where temperatures exceed safe thresholds. This proactive monitoring can prevent hardware damage and improve system reliability by alerting administrators to potential cooling issues before they result in failure.
-
Performance Baselines for GPU Resources: Establish baseline performance metrics for your GPU resources. By regularly collecting data and analyzing trends in GPU usage, organizations can identify anomalies and optimize their workloads accordingly, leading to enhanced operational efficiency.
-
Dockerized GPU Usage Insights: In a containerized environment, use the plugin to monitor GPU performance from within a Docker container. This allows developers to track GPU performance of their applications in production, facilitating troubleshooting and performance optimization within isolated environments.
ServiceNow
-
Proactive Incident Management: Utilize the Telegraf and ServiceNow integration to stream infrastructure and application metrics in real-time to ServiceNow Event Management. Automatically trigger incidents or remediation workflows based on thresholds, significantly reducing incident detection and response times.
-
End-to-End Application Monitoring: Deploy Telegraf agents across multiple layers of an application stack, sending performance metrics directly into ServiceNow. Leveraging ServiceNow’s Operational Intelligence, teams can correlate metrics across components, quickly identifying performance bottlenecks.
-
Dynamic CI Performance Tracking: Integrate Telegraf metrics with ServiceNow’s CMDB by using this plugin to push performance data, allowing automatic updates of Configuration Item (CI) health states based on live metrics. This ensures an accurate and current state of infrastructure health in ServiceNow.
-
Cloud Resource Optimization: Collect metrics from hybrid and multi-cloud infrastructures using Telegraf, streaming directly to ServiceNow. Leverage these metrics for real-time analytics, predictive capacity planning, and resource optimization, enabling proactive management and reduced operational costs.
Feedback
Thank you for being part of our community! If you have any general feedback or found any bugs on these pages, we welcome and encourage your input. Please submit your feedback in the InfluxDB community Slack.
Powerful Performance, Limitless Scale
Collect, organize, and act on massive volumes of high-velocity data. Any data is more valuable when you think of it as time series data. with InfluxDB, the #1 time series platform built to scale with Telegraf.
See Ways to Get Started
Related Integrations
Related Integrations
HTTP and InfluxDB Integration
The HTTP plugin collects metrics from one or more HTTP(S) endpoints. It supports various authentication methods and configuration options for data formats.
View IntegrationKafka and InfluxDB Integration
This plugin reads messages from Kafka and allows the creation of metrics based on those messages. It supports various configurations including different Kafka settings and message processing options.
View IntegrationKinesis and InfluxDB Integration
The Kinesis plugin allows for reading metrics from AWS Kinesis streams. It supports multiple input data formats and offers checkpointing features with DynamoDB for reliable message processing.
View Integration